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Motivation: From public to private auctions

¢ Public (old) Auctions

1.

ARSI N

User u arrives, with some features X,, (irrelevant for us)

DSP (us) runs N campaigns, observe v, 1,Vy2,..., Vyn
DSP bids max,-e[,\,] Vu,i
Competition bids v, ny1,. .., Vi nip

2nd price auction. Winner argmax v, j, pays 2nd-highest

¢ Private (future) Auctions

1.

oW

User u arrives, its features X, are not observed

DSP (US) Only knows vzl o~ Fl, V222, VIILN Y FN
DSP do not bid but selects subset of compaigns A C [N]
Competition bids v, ,11,..., Vunip

Winner arg max;c nru{ni1,....n1p} Vu,j, PAys 2nd-highest

.....
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Challenges and Objectives

® Choosing a larger number of ads impacts the outcome:
Increases the probability of winning
Decreases the gain from winning

® | arger size also impacts the observations
Increases the proba. of observing (a click or not)

Decreases the observation quality (high variance)
== Tradeoff in choosing “coalition size"

® Model (new, future) privacy constraints in online advertising
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Model: Ad auction as bandit

T ad slots sold sequentially through second price auctions.
Highest bidder wins, pays second highest bid

The DSP chooses n, < N campaigns that participate

There are p € N* external competitors.

All N + p bidders’ valuation are i.i.d. v, ; ~ F the unknown cdf
Bidders bid truthfully their value, b, = v, ;

DSP only observes the reward and value if the coalition wins.
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The reward and regret

e |f coalition chooses n bidders to participate, its reward is

i€[n+p]

r(n) = B (v)icpny o ~FE™ l(v(l) — v(2))1{ arg max v; € [n]H

where v(1) and v(y) are first and second maximum of v.
® Sequence of choices ny, ..., nr leads to regret

Rr=>_r(n*)—r(n), with n*=argmaxr(n)
t<T n€[N]

e Standard bandit algorithms R+ < (’)(mm{NIog \/7})

— Leverage structure to improve guarantees ?
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The estimation
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Reformulation of the reward function

Using order statistics properties, the reward function is satisfies,

r(n) =n /0 " FREel() — FPE(x)dx (1)

n times a decreasing function with n

= r(n) is usually unimodal (at least for lots of cdf F)!
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Estimation of r(n)

H(n) = | " EPEnl(x) — FP0(x)dx

estimating F"tP—1 and FntP is sufficient to estimate r(n)

® n not fixed in advance!
—> Need an estimator for any power F.
® A sample of F""? gathered if auction t is won (the winning bid)

e Combining samples from different F"t™P challenging

o fm— (I:'k)7 much simpler, if m and k not too different
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The estimator 7 (n)

® Past winning bids when n, = k Wi = (Wi 1, ..., Wi.m,)
® Empirical cdf of FK*P : I:_k+p(x) = mik i H{wgy < x}

e Estimations
. P
® of powers F,fi[:(x) = Fkkf;(x)

® of reward function (n different estimators)
b= - n
mm = [ (FLip 00 - Fiib) dx
/N k and n should be close enough

L n ~ 1
FU0" = Bt =~ LROOHFO0* — b)) g
® n >k, error scales as n/k

® n < k, error scales with 1/F(x)
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Estimation of r(n)

Theorem (informal)
Fix n < N, then for any k € N(n) := {% —p,%(n+p—l)—p},
with probability 1 — ¢,

nt+p—1

[7(n) — r(n)| < e U5 (%) +n (Iog <m‘?k)) -

~ my my

® The n term becomes L log(n) if F L-Lipschitz

e Technical proof on concentration ineq.

e Can estimate r(n) from any k in its neighborhood N (n)
the one with the most samples !

9/17 M. Cherifa



The algorithms
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Local Greedy

Idea: adaptation of OSUB (Combes and Proutiere 2014).

Algorithm Local Greedy LG
Input: exploration parameter «, neighborhoods N (n)

Play n; = 1 and observe w ~ F1*P ; > Initialization
for t > 2 do
Set ¢, = n,_q, compute (?Zt(”))nel}(ft); > Estimate from leader
if mi:=[{se[t—1],n =/} <at then
‘ play ng = ﬁt ; > Linear sampling
else
L play n: € argmax,cyq,) P, (n) ; > Greedy play in N({¢)
Observe w ~ FmtP - > Gather feedback
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Regret bound for Local Greedy LG

Theorem (informal)

Let A == minycn—1y |r(n + 1) — r(n)| (worst local gap) and
A, = r(n*) — r(n). The regret of LG is bounded and satisfies
A,

Rr < On( ) A2
ne[N]

v~ Works thanks to unimodality:

there is a better decision in the neighborhood of the
empirical best one in the direction of the optimal.

X The regret of LG depends on the worst local gap!
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Improved Algorithm Greedy Grid

Greedy Grid = Local Greedy + Successive Elimination
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Greedy Grid

Algorithm Greedy Grid
Input: Grid S, confidence levels (d;):cn, sampling parameter «

Play n; = min S and observe w ~ F™tP
for t > 2 and n € [N] do

ln = argmax ey, Mi(t) ; > Elect leaders
L,= Zgn(n, d¢) and U, = Ugn(n, 3t) ; > Compute UCB and LCB
i = argmax,cyj L,; > Compute best lower bound index
C:={ac S, U > L;:,Vs € [a,if]} > Remaining grid arms
if n._1 € B(i) and m,, , < at then

L Play ng = Ny_q > linear sampling
else > Play unif in grid or greedy
| If C; # @: Round Robin on C; Else play argmax,cp(;r) fr,(n)

L Observe w ~ FmtP
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Regret bound for Greedy Grid GG

Theorem (informal)

Suppose that GG is tuned with confidence level 6, = ﬁ and
a =1/4. Then, for any T € N it holds that

Rr <O Z—+Z

neB* ” kES

® 3% is the bin of arm n*.

v No dependence on the worst local gap anymore!

/ Ry < O(y/(log(N) + |B|) T) = O(;/(log(N) + n*) T)
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Numerical simulations

A benchmark of LG, GG, UCB, EXP3 and OSUB on synthetic data in

terms of the expected regret R(T).

Expected Regret R(T)
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Figure: Performance of LG and GG, OSUB, UCB and EXP3, computed over

0 50000

100000 150000

Horizon T'

200000

20 trajectories, with 5(0.05), N =100 and p =4

16/17

M. Cherifa



Thank you
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