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Motivation: online advertisement
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Motivation: online advertisement

Constraint 2: budget evolution
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Motivation: online advertisement

Constraint 3: community structure
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From motivation to our problem setting

Key elements of our setting

» Online user arrivals: decisions made sequentially.
» Ad budgets: limited and sometimes refilled.
» Communities: matching users to relevant ads.
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Warm-up: standard online matching

Modeling:
> Natural structure: bipartite graphs.
» Online arrivals: part of the graph is
unknown.
Fort=1,...,|V]
» v, arrives with its edges.
» Each node u € U has a budget
b, € {0,1} (degree of u).
» The algorithm can match v; to a
neighbor in U.

» The matching decision is
irrevocable.

Figure: Online matching on a bipartite
graph.
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The performance of an algorithm

Figure: ALG = 2. Figure: OPT = 3.
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Competitive ratio

Definition (informal)

For G € G, where G is a family of graphs, the competitive ratio is defined as:

_ E(ALG(G))

™ B(oPT(Q)

Note that 0 < CR < 1.
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The usual frameworks

> Adversarial (Adv): G can be any graph. The vertices of V arrive in any
order.

> Stochastic (I1D): The vertices of V are drawn iid from a distribution.

Frameworks depend on the type of the graph!
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Greedy Algorithm

Algorithm 1:

Input: a bipartite graph G
Output: a matching M
fort=1,...,|V|do
Match v; to any free neighbor
chosen uniformly at random.
Update M.

end

Theorem:(informal)

Adversarial setting (Mehta et al. 2013),
1
CR(Greedy) = 5
Stochastic setting (Mastin et al. 2013),

CR(Greedy) > 0.837.
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Online b-matching problem: Balance algorithm

Algorithm 2: Theorem: (informal)
Input: a bipartite graph G In the adversarial framework:
Output: a matching M If by, = b (Kalyanasundaram et al. 2000),
fort=1,...,|V|do
Match v; to a neighbor with CR(Balance) = 1 — _-
highest remaining budget. (1+1/p)°
Update M.

With different budgets (Albers et al. 2021),
end

1

CR(Bala.nce) =1- m

bu.o=2

after match bu1,1 =1

buyo =1

after match by, 1 = 0

bmin = minueu bu.

buyo =2

after match bu3,1 =1
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Differential equation method - the goal

In stochastic frameworks, how does the matching process evolve over time?
» Does it move smoothly toward equilibrium?
» Or does it fluctuate unpredictably due to randomness?

For i =0,1,2,..., we have a discrete time random process

Y(i) = (Ya(i), - .., Ya(i),

(e.g. numbers of edges, degrees, components in a random graph process).

6

© Understand the typical trajectory of ,/VV/WW\N Sy
W Vol

Y as the system grows. "W
—— Stochastic process

4
‘ I,
—— ODE solution

Rely on ordinary differential equations. ~--- Stationary solution
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Differential equation method - the flavour

Key idea =p think of E[Yk(i+1) — Yk(i) | Fi] as a gradient.

Assumptions

> Approximate the drift.
E[Yi(i+1) — Yi(i) | Fi] = Fx(i/n, Ya/n, ..., Ya/n)+ o(1), with F “nice
enough’.

» Check |Yi(i+ 1) — Yi(i)| is small enough.

nice enough = sufficiently smooth.

=3 Then, with high probability, the random process Yk() stays very close to yk(t)

the solution of yi/(t) = Fi(t, y1(t),- .., Ya(t))-
=% Dynamic concentration of the process around its expected trajectory.

This result is known as the Wormald theorem (Wormald 1999; Warnke 2019).
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Differential equation method — the difficulty

A In practice, the bottleneck is solving the ODE.

» The drift F(-) is often non-linear and high-dimensional.
» No closed-form solution in many real problems.
» Even numerically, the behavior may be tricky to understand.

Our strategy: [‘MM“W o
. . W Vol
> Study the stationary solution .
(equilibrium). . i
» Construct good approximations of the
ODE trajectory. — StochaTtic process
1 ~—— ODE solution

» Solve the ODE in closed form. 77 Stationary solution
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More realistic setting:
online matching with budget refills (Cherifa et al.
2024)

Clément Calauzénes Vianney Perchet
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From standard online matching to budget refills

Constraint 1 4+ Constraint 2: online arrivals and budget evolution.

The standard online matching Budget refills
> G =(U,V,E)is a bipartite graph. > G=(U,V,E) is a bipartite graph.
» Nodes in U are offline and nodes in » Nodes in U are offline and nodes in V
V are online. are online.
» Each node in U has a budget » Each node in U has a budget b, ; € N,

byt-1—1+r: match,
byt—1+r: no match.

by € {0,1},
{bu,tl ~1 match, bue = {
bu,t =

by -1 no match.
r+ can be stochastic or deterministic.
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Problem definition

Let G=(U,V,E) be a bipartite graph. A matching on G is a binary matrix
> |U|=n,|V|=T with T >n. x € {0,1}"*T such that,
» Nodes in U are offline and nodes in > V(u,t) e Ux V, (ut) € E= Xy =0.
V are online. > VteV, Y cyXur <1
» Each node in U has a budget > Y(u,t) e UxV, byi—1 <1=x,:=0.

by >0 attimet e [T].

Two frameworks considered:

» Stochastic framework.

» Adversarial framework.
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The stochastic framework

G is an Erdos - Rényi sparse random graph:
» Edges occurring independently with probability p = a/n.
» Each node in U has a budget b, € N. Budget dynamics:

bu,t = min(K, bu,tfl — Xu,t + rt)» bu,O = bo,

r¢ is a realization of a Bernoulli random variable B(%)
Budgets are capped by K.
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The difficulty of the setting

» Greedy in standard online matching: the matching size built by Greedy
satisfies,

a3\ n—Greedy(G,t)
E [Greedy(G, t) — Greedy(G, t — 1))|Greedy(G, t)] = 1 — (1 - ;)

> Greedy(G,t)/n WPy 2 where z is the solution of 2(t) =1 — e 210=2®),

» Greedy in online matching matching with budget refill: match only if
budget > 1, thus,

a I'I*Yo(t)
E [Greedy(G, t + 1) — Greedy(G, t)|Greedy(G,t)] =1 — (1 - E) .

Greedy(G, t) depends on Y, the number of nodes in U with budget k.

» K dimensional problem!

M. Cherifa Dynamics and learning in online allocation problems 20/50



The matching size created by Greedy

Theorem: ( et al. 2024) (informal)
For % > 1, with high probability Greedy(G, T) is given by,

Greedy(G, T) = nh(T/n) + o(n).

Where h is solution of: h(T) =1— e 2(0=2(7) and z, is the solution of,

2(7) = —20(7)B + 21(7)g(20(7)) for k = 0,
2i(1) = —Az(7)B + Aziy1(7)g(20(7)) for 1< k< K -1,
2k (1) = B zk—1(7) — z(7)g(20(7)) for k = K,

SR zl(r) = 1.

1—e—2ataz(7)

(1)

g(zo(1)) = B e Az (1) = zk(7) — zk—1(7) and 0 < 7 < T /n.
v
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Solving the system

h=1—e -2

1 _ e—a+azo
H=—2p+2z1

1— 2z
1— e—a+azo
Zk = (zk—1 — zk) B + (Zk41 — 24)
1-— V)
. 1— e—a+azo
Zk = Bzk—1 — 2k
1-— 20

ZkK:O zc=1

A Hard to solve

» Non-linear and strongly coupled in
(zoy- -, 2K).

» No closed-form even for small K.

» Focus on the stationary solution (z;, ...

derive performance guarantees.

M. Cherifa
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Case K =1

For K =1, eq. (1) is reduced to

20(1) = =B z0(7) + z1(7)g(20(7))
21(1) = Bao(7) — z1(7)g(20(7))
2(7) + z1(7) =1

The stationary solution (z0*, z,*) is
exponentially stable,

1 L0
%=3 aW(ﬂe( )>’
z*:z*i.

0 g(207)

W is the Lambert function.

v,

Corollary: ( et al. 2024)
(informal)

T
For — > 1, with high probability,
n

|Greedy(G, T) — nh*(T/n)| < CT ¢,
with,

h*(x) = x(1 - e_a(l_zo*)).

Here ¢ > 0 and C are known constants. )
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Case K >1

The stationary solution of eq. (1) is
asymptotically stable and is given by,

Zo* Zo*L Zo»< (L>K
g(2r) T \e=t)) )

2™ is the unique solution of
K (8 Y _q
k02" () =1

M. Cherifa

Corollary: ( et al. 2024)

(informal)

For % > 1, with high probability,

|Greedy(G, T) — nh*(T/n)| < o(T),

with h*(x) = x(1 — e~2(1=27)),
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Difficulty of higher dimension

v Simple case: K =1 X General case: K > 1
> Only two budget levels: {0,1}. > Multiple budget levels: 0,1,..., K.
» Constraint zp+z =1= » Perturbations can spread across levels.

one-dimensional ODE. » In some directions pertubations decay

» Every deviation is immediately pulled slowly.

back.
Only asymptotic stability

Exponential stability (slow convergence in some directions)
(fast convergence)

—> Stability strongly depends on K
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The technical reason behind asymptotic stability

Stability analysis of stationary solutions of an ODE system via the eigenvalues of
the Jacobian matrix at the equilibrium point.

—B+z7g' (") g(z0*) 0 0
B+ (2" —2")g(2") —B—g(2") g(z0") :
J= (z3* — 2*)g'(20*) B —B—g(z*) 0
: g(z0")
—zk*g'(20%) 0 B —gz").

The spectrum of J lies in the left half-plane, apart from one eigenvalue located at
zero.
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Convergence of the CR

Theorem: ( et al. 2024) (informal)

K
«(_s . K 8
BTz (g(Zo*)) +nz20" >,k (g(zo*

K
)) —1/4
>1—
CR(Greedy) > 1 b+ BT +O(T™),

When T, n, K tends to +oo:
|CR(Greedy) — 1| — 0,

where z* and g defined as previously.

Interpretation:

» When T — co: CR(Greedy) — w (the CR depends only on the
stationary point).

> When K, n — oo: %1_2"*) — 1 (Greedy wastes almost nothing when
budgets grow).

M. Cherifa Dynamics and learning in online allocation problems
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The adversarial framework

G = (U, V,E) is a bipartite graph generated by an oblivious adversary:
» |U/=nand |V|=T with T > n.
» Each node in U has a budget b, € N. Budget dynamics:

bu,t = bu,t—l — Xu,t + 1t moa m=0, bu,O = b0~

m is the parameter of the frequency of the refills.
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Theorem: ( et al. 2024) Theorem:( et al.
(informal) 2024)(informal)
For m > /T, Form:o(ﬁ),
1 —
CR(Balance) < 1— D E— CR(Balance) <1 — % .
(1+2) N
~0.73325...
where o is defined by 1 = [ %< dx.
V.

No deterministic algorithm can beat Balance.
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More realistic setting:
online matching on stochastic block model (Cherifa
et al. 2025)

Clément Calauzénes Vianney Perchet
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From Erdos - Rényi graph to stochastic block model

Constraint 1 + Constraint 3: online arrivals and community structure.

Erdos - Rényi model Stochastic block model
» All ads are statistically identical. » Users and ads are divided into
» Every user connects to every ads communities.
with same probability p. » Edge probability depends on class
» Matching decisions depend only on pair pc.d.
availability (budget 0 or 1). » Each class evolves differently and

» X no community structure. affects the others.

Matching depends on class proportions and compatibility matrix.
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Problem setting

Let G be a bipartite graph
G=(U,V,E).
» |U| = n offline nodes,
|V| =T > n online arrivals.

» Offline and online nodes have
classes in C and D.

» Each ue U and v € V has a
class c(u) ~ p and d(v) ~ v.
» Conditional on classes,

Pr[(u, v) € E] = pe(u), d(v)-

Generalization of Erdds - Rényi
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Notations and assumptions

dc,d

P The sparse regime: every p. 4 = =2

v

b, is the proportion of nodes in class c.

» Mc(t) is the number of matched nodes Two cases of study:

in class c. > The probabilities pc 4 are

> M(t) := > .cc Mc(t) is the size of the known.

matching constructed. > The probabilities pc 4 are

> F.(t) is the set of unmatched nodes of unknown.
class c.
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Known p., - Myopic strategy

Goal. When a node of class d arrives, pick an offline class ¢ that yields a good chance
of matching without exhausting capacities.

Idea. Pre-compute an optimal plan Q* such that:

Q" € arg mgxz Q(c, d)p(c, d),

c,d

st > Q(c,d)v(d) = be, Ve e,
d

and )~ Q(c, d)v(d) = v(d),vd € D.

c

<@ Intuition. Q" is a smart allocation: It sends each type-d arrival to the most
promising offline classes while respecting capacities.
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Known p., - Myopic strategy

Algorithm 3: Myopic algorithm

Output: Updated matching M(t)
Compute the optimal Q*.
for t € [T] do
Choose ¢; € C at random with probability Q*(c;, d+)/v(d;).
if 7, (t) =0 then
| M(t) = M(t —1).
else
| M(t) = M(t — 1) U{(ue, t)} for uy ~ unif(Fc,(t)).
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From Erdés—Rényi to SBM: difficulty for Myopic

> Myopic in Erdos—Rényi (homogeneous case)
> One global matching process M(t).
> ’V’( ) Whp 222 (1), y(t)=1- e~ a(1—y(1)
> Scalar ODE, explicit closed form for y.

> Myopic in SBM (structured, heterogeneous case)
» One matching process per class c: Mc(t).

h
MC(t 2Py ye(t), where y. solves

Je(t) = ZdD:l (1 _ e—ac_d(bc_YC(t))> Q*(c, d).

> No closed form: depends on the class c, all neighbor classes d, and the
optimal plan Q™.

> With high probability, for each class c:
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Known p. 4 - the matching size of Myopic strategy

Theorem: ( et al. 2025) (informal)
Let T = an, and y. : [0,a] — R be the solution of the following ODE,

D
e(s) :Z e 2c.dlbe—ye(s )Q (c, d),
d=1
¥e(0) = 0.
Then, for each class ¢ € C, M(t) satisfies w.h.p,
IMc(t)/n = ye(t/n)| < Op, a(n™/3).

Moreover,y. = J. — ec, with §(t) = bc(1 — e *t<), and e, satisfies,

ec(t) < J(1— e tY)/Le.

where, Jc and L. are known constants.
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Known p., - Balance algorithm

Algorithm 4: Balance

Output: Updated matching M(t)
for t € [T] do
Choose ¢; = arg max (] ZjDzl(l — (1 = 2d)mbe=Me(D))y ()
if 7c,(t) =0 then
| M(t)=M(t—1).
else
| M(t) = M(t —1)U{(ug, t)} for uy ~ unif(Fe,(t)).
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Known p. s - Balance is harder than Greedy/Myopic

Greedy: smooth decisions
» Matching probability is a continuous function of the state.
» ODE approximation works.

Balance: switches to the class with max availability.

» Drift has an indicator of the maximizer:

E[Mc(t+1)=Mc(t) | n,M(t)] = Hc,bc,n(’\/’c(t))-l{Hc,bc,n(/\/’c(t)) = max Hk,bk,n(/\/’k(t))}

discontinuous at ties

© Drift is not Lipschitz = ODE method fails.

© A stronger tool is needed: Differential Inclusions.

Heben(x) = 30 (1 — (1 — ac.a/n)"™ ) v(d)



Differential Inclusions

ODE: one direction at each point
x(t) = f(x(t)).
Differential inclusion: many possible directions

x(t) € F(x(1)),
where F(x) is a set-valued map.

It is needed here because:
» Balance switches between classes: drift is not continuous.

» DI naturally handles switching and multiple possible drifts.
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Convergence to a Differential Inclusion (Gast et al. 2011)

©® Does the matching process converge to a DI?

Setting (Markov chain with small drift and noise)
YV (k+1) = YV (k) + g" (YN (k) + UN(k+1)

Assumptions

» Vanishing drift: gV = ~"f", with vV — 0.

» Small noise: U" is a martingale difference (no big jumps).
Key idea: If the drift is discontinuous, the limit is set-valued:

y(t) € Fy(t)).

=> With high probability, YV stays close to a trajectory of y(t) € F(y(t)).

Even with discontinuities, the stochastic process has a deterministic limit.
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Known p., — matching size of Balance

Our contribution. the matching process under Balance converges to a
deterministic differential inclusion.

Theorem (informal) ( et al. 2025)

Let T = an, and let m be the unique solution of the differential inclusion

m(t) € F(m(t)) := Conv{fc,bc(mc(t)) e: c€ arkger[glax fk,bk(mk(t))} ,

where fo b (x) = 30 (1 — e %ab<=)1(d). Then, for all t € [T] and ¢ € C, with high
probability,

MCT(t) — mc(t/n) S Aa,c,L/n>

Here, m. is is known in closed form.

ec is the c-th basis vector of RICI and L, Aq,c,L, are known constants.

— First analysis of Balance in sparse random SBM.
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Unknown p. 4 — from Matching to Bandit Learning

In practice: the SBM parameters
are unknown.

» The connection rates ac g4 are not
given to the algorithm.

» Matching outcomes are the only
source of information.

» The platform must decide who to
match and learn connection
probabilities at the same time.

Decision-making + Statistical
learning are coupled.

Bandit View ~

» Each class ¢ € C behaves like an
arm.

» Playing arm ¢; at time t reveals a
Bernoulli reward:

reward; = 1{match succeeds}

» We must balance:
> Exploration: try classes to
estimate ac g.
> Exploitation: match with the
best-estimated class.
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The strategy - ETC-balance

Our goal: match with unknown pc 4 = ac 4/n.

N Try each classes in C to build estimates of D. 4 = (1 - aCT’d)nbchc(t).

Explore then commit (ETC)

For t < 7—explore:
> try all classes uniformly,
> collect match outcomes (match/ no match),

> estimate all D, 4.

“\ Freeze the estimates, and run Balance.
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The regret

For each class ¢ € C,
> M(t) is the number of matches made by the Balance up to time t.
> I\A/Ic(t) is the number of matches made by ETC — balance up to time t.

Theorem: ( et al. 2025) (informal)

Let R(T) = > cce Mc(T) — M.(T) denote the regret of ETC — balance.
i3

Suppose the exploration phase lasts for Tepiore = T 3, for some 0 < g < 1.

Then the regret satisfies:
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ETC instead of UCB

Goal: Control the regret

R(T) = (M(T) - Mc(T))

ceC
<D ([M(T) = nme(T/n)| + |nme(T /n) = nine(T/n)| = |M(T) — nine(¢)(T/n)]| )
cec DI approximation for Balance DI learning error DI error for the learning algorithm
If UCB is used: With ETC:

> fc is hard to solve. » M. has the same structure as m. with

» The bonus term in estimation estimated parameters.

changes at every round > Explore first: collect unbiased

UCBca(t) = Dea + aTLgdt- information.
> UCB mixes exploration and » Then freeze estimates = Balance has
exploitation. fixed parameters.
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° Conclusion and future works

» More sophisticated refills dynamics.

In our setting: Generalization:
b b » Poisson Refills : r: is a realization of
ut = Duje—1 = Xue + e Poisson random variables.

> State dependant refills, nodes with low

Where r; is a Bernoulli random variable. _
budgets get refills.

» Simple refills dynamics in Geometric random graphs and configuration
models.
» Stochastic block model with budget refills.

1. Matching will depend on budgets and on classes affinities.
2. More coupled system of ODE to analyze.
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Thank you <.,
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