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1 Motivation: online advertisement

Constraint 1: online arrivals
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1 Motivation: online advertisement

Constraint 2: budget evolution
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1 Motivation: online advertisement

Constraint 3: community structure
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1 From motivation to our problem setting

Key elements of our setting

I Online user arrivals: decisions made sequentially.
I Ad budgets: limited and sometimes refilled.
I Communities: matching users to relevant ads.
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1 Warm-up: standard online matching

Modeling:
I Natural structure: bipartite graphs.
I Online arrivals: part of the graph is

unknown.
For t = 1, . . . , |V |:
I vt arrives with its edges.
I Each node u ∈ U has a budget

bu ∈ {0, 1} (degree of u).
I The algorithm can match vt to a

neighbor in U.
I The matching decision is

irrevocable.
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Figure: Online matching on a bipartite
graph.
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1 The performance of an algorithm
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Figure: ALG = 2.
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Figure: OPT = 3.
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1 Competitive ratio

Definition (informal)
For G ∈ G, where G is a family of graphs, the competitive ratio is defined as:

CR = E(ALG(G))
E(OPT (G)) .

Note that 0 ≤ CR ≤ 1.
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1 The usual frameworks

I Adversarial (Adv): G can be any graph. The vertices of V arrive in any
order.

I Stochastic (IID): The vertices of V are drawn iid from a distribution.

Frameworks depend on the type of the graph!
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1 Greedy Algorithm

Algorithm 1:
Input: a bipartite graph G
Output: a matching M
for t = 1, . . . , |V | do

Match vt to any free neighbor
chosen uniformly at random.

Update M.
end

Theorem:(informal)
Adversarial setting (Mehta et al. 2013),

CR(Greedy) = 1
2 .

Stochastic setting (Mastin et al. 2013),

CR(Greedy) ≥ 0.837.
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1 Online b-matching problem: Balance algorithm

Algorithm 2:
Input: a bipartite graph G
Output: a matching M
for t = 1, . . . , |V | do

Match vt to a neighbor with
highest remaining budget.

Update M.
end

U
bu1,0 = 2

after match bu1,1 = 1

bu2,0 = 1
after match bu2,1 = 0

bu3,0 = 2
after match bu3,1 = 1

V
u1

u2

u3

v1

v2

v3

Theorem: (informal)
In the adversarial framework:
If bu = b (Kalyanasundaram et al. 2000),

CR(Balance) = 1 − 1
(1 + 1/b)b .

With different budgets (Albers et al. 2021),

CR(Balance) =1 − 1
(1 + 1/bmin)bmin

.

bmin = minu∈U bu.
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1 Differential equation method - the goal

In stochastic frameworks, how does the matching process evolve over time?
I Does it move smoothly toward equilibrium?
I Or does it fluctuate unpredictably due to randomness?

For i = 0, 1, 2, . . ., we have a discrete time random process

Y (i) = (Y1(i), . . . , Ya(i)),

(e.g. numbers of edges, degrees, components in a random graph process).

Question-Circle Understand the typical trajectory of
Y as the system grows.

LIGHTBULB Rely on ordinary differential equations.
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1 Differential equation method - the flavour

Key idea think of E[Yk(i+1) − Yk(i) | Fi ] as a gradient.

Assumptions
I Approximate the drift.

E[Yk(i+1) − Yk(i) | Fi ] = Fk(i/n, Y1/n, . . . , Ya/n) + o(1), with F “nice
enough”.

I Check |Yk(i + 1) − Yk(i)| is small enough.

nice enough = sufficiently smooth.

Then, with high probability, the random process Yk (i)
n stays very close to yk(t)

the solution of yk
′(t) = Fk(t, y1(t), . . . , ya(t)).

Dynamic concentration of the process around its expected trajectory.

This result is known as the Wormald theorem (Wormald 1999; Warnke 2019).
M. Cherifa Dynamics and learning in online allocation problems 14/50



1 Differential equation method – the difficulty

Exclamation-Triangle In practice, the bottleneck is solving the ODE.

I The drift F (·) is often non-linear and high-dimensional.
I No closed-form solution in many real problems.
I Even numerically, the behavior may be tricky to understand.

Our strategy:
I Study the stationary solution

(equilibrium).
I Construct good approximations of the

ODE trajectory.
I Solve the ODE in closed form.
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More realistic setting:
online matching with budget refills (Cherifa et al.

2024)

Clément Calauzènes Vianney Perchet
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2 From standard online matching to budget refills

Constraint 1 + Constraint 2: online arrivals and budget evolution.

The standard online matching
I G = (U, V , E) is a bipartite graph.
I Nodes in U are offline and nodes in

V are online.
I Each node in U has a budget

bu,t ∈ {0, 1},

bu,t =
{

bu,t−1 − 1 match,

bu,t−1 no match.

Budget refills
I G = (U, V , E) is a bipartite graph.
I Nodes in U are offline and nodes in V

are online.
I Each node in U has a budget bu,t ∈ N,

bu,t =
{

bu,t−1 − 1 + rt match,

bu,t−1 + rt no match.

rt can be stochastic or deterministic.
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2 Problem definition

Let G=(U,V,E) be a bipartite graph.
I |U| = n, |V | = T with T ≥ n.
I Nodes in U are offline and nodes in

V are online.
I Each node in U has a budget

bu,t ≥ 0 at time t ∈ [T ].

A matching on G is a binary matrix
x ∈ {0, 1}n×T such that,
I ∀(u, t) ∈ U × V , (u, t) 6∈ E ⇒ xu,t = 0.
I ∀t ∈ V ,

∑
u∈U xu,t ≤ 1.

I ∀(u, t) ∈ U ×V , bu,t−1 < 1 ⇒ xu,t = 0.

Two frameworks considered:

I Stochastic framework.
I Adversarial framework.
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2 The stochastic framework

G is an Erdös - Rényi sparse random graph:
I Edges occurring independently with probability p = a/n.
I Each node in U has a budget bu,t ∈ N. Budget dynamics:

bu,t = min(K , bu,t−1 − xu,t + rt), bu,0 = b0,

rt is a realization of a Bernoulli random variable B( β
n ).

Budgets are capped by K .
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2 The difficulty of the setting

I Greedy in standard online matching: the matching size built by Greedy
satisfies,

E [Greedy(G, t) − Greedy(G, t − 1))|Greedy(G, t)] = 1 −
(

1 − a
n

)n−Greedy(G,t)
.

I Greedy(G, t)/n w.h.p.−−−→ z, where z is the solution of ż(t) = 1 − e−a(1−z(t)).

I Greedy in online matching matching with budget refill: match only if
budget ≥ 1, thus,

E [Greedy(G, t + 1) − Greedy(G, t)|Greedy(G, t)] = 1 −
(

1 − a
n

)n−Y0(t)
.

Greedy(G, t) depends on Yk , the number of nodes in U with budget k.
I K dimensional problem!
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2 The matching size created by Greedy

Theorem: (Cherifa et al. 2024) (informal)
For T

n ≥ 1, with high probability Greedy(G, T ) is given by,

Greedy(G, T ) = nh(T/n) + o(n).

Where h is solution of: ḣ(τ) = 1 − e−a(1−z0(τ)), and z0 is the solution of,
ż0(τ) = −z0(τ)β + z1(τ)g(z0(τ)) for k = 0,

żk(τ) = −∆zk(τ)β + ∆zk+1(τ)g(z0(τ)) for 1 ≤ k ≤ K − 1,

żk(τ) = β zk−1(τ) − zk(τ)g(z0(τ)) for k = K ,∑K
k=0 zk(τ) = 1.

(1)

g(z0(τ)) = 1−e−a+az0(τ)

1−z0(τ) , ∆zk(τ) = zk(τ) − zk−1(τ) and 0 ≤ τ ≤ T/n.
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2 Solving the system



ḣ = 1 − e−a(1−z0)

ż0 = −z0 β + z1
1 − e−a+az0

1 − z0

żk = (zk−1 − zk)β + (zk+1 − zk) 1 − e−a+az0

1 − z0

żK = β zK−1 − zK
1 − e−a+az0

1 − z0∑K
k=0 zk = 1

Exclamation-Triangle Hard to solve

I Non-linear and strongly coupled in
(z0, . . . , zK ).

I No closed-form even for small K .

LIGHTBULB Our strategy
I Focus on the stationary solution (z∗

0 , . . . , z∗
K ): analyze its stability and

derive performance guarantees.
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2 Case K = 1

For K = 1, eq. (1) is reduced to
ż0(τ) = −β z0(τ) + z1(τ)g(z0(τ))
ż1(τ) = βz0(τ) − z1(τ)g(z0(τ))
z0(τ) + z1(τ) = 1

The stationary solution (z0
∗, z1

∗) is
exponentially stable,

z∗
0 = 1

β
− 1

a W
(

a
β

e−a
(

1− 1
β

))
,

z∗
1 = z∗

0
β

g(z0∗) .

W is the Lambert function.

Corollary: (Cherifa et al. 2024)
(informal)

For T
n ≥ 1, with high probability,

|Greedy(G, T ) − nh∗(T/n)| ≤ CT 1−ε,

with,

h∗(x) = x
(
1 − e−a(1−z0

∗)).
Here ε > 0 and C are known constants.
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2 Case K ≥ 1

The stationary solution of eq. (1) is
asymptotically stable and is given by,(

z0
∗, z0

∗ β

g(z0∗) , . . . , z0
∗
(

β

g(z0∗)

)K
)

,

z0
∗ is the unique solution of∑K
k=0 z0

∗
(

β
g(z0∗)

)k
= 1.

Corollary: (Cherifa et al. 2024)
(informal)
For T

n ≥ 1, with high probability,

|Greedy(G, T ) − nh∗(T/n)| ≤ o(T ),

with h∗(x) = x(1 − e−a(1−z0
∗)).
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2 Difficulty of higher dimension

Check Simple case: K = 1
I Only two budget levels: {0, 1}.
I Constraint z0 + z1 = 1 ⇒

one-dimensional ODE.
I Every deviation is immediately pulled

back.

Exponential stability
(fast convergence)

Times General case: K > 1
I Multiple budget levels: 0, 1, . . . , K .
I Perturbations can spread across levels.
I In some directions pertubations decay

slowly.

Only asymptotic stability
(slow convergence in some directions)

→ Stability strongly depends on K
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2 The technical reason behind asymptotic stability

Stability analysis of stationary solutions of an ODE system via the eigenvalues of
the Jacobian matrix at the equilibrium point.

J =



−β + z1
∗g ′(z0

∗) g(z0
∗) 0 · · · 0

β + (z2
∗ − z1

∗)g ′(z0
∗) −β − g(z0

∗) g(z0
∗)

. . .
...

(z3
∗ − z2

∗)g ′(z0
∗) β −β − g(z0

∗)
. . . 0

...
. . . . . . . . . g(z0

∗)
−zK

∗g ′(z0
∗) · · · 0 β −g(z0

∗).


.

The spectrum of J lies in the left half-plane, apart from one eigenvalue located at
zero.
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2 Convergence of the CR

Theorem: (Cherifa et al. 2024) (informal)

CR(Greedy) ≥ 1 −
βTz0

∗
(

β
g(z0∗)

)K
+ nz0

∗∑K
k=1 k

(
β

g(z0∗)

)k

nb0 + βT + O(T −1/4),

When T , n, K tends to +∞:

|CR(Greedy) − 1| → 0,

where z0
∗ and g defined as previously.

Interpretation:
I When T → ∞: CR(Greedy) → g(z∗

0 )(1−z∗
0 )

β (the CR depends only on the
stationary point).

I When K , n → ∞: g(z∗
0 )(1−z∗

0 )
β → 1 (Greedy wastes almost nothing when

budgets grow).
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2 The adversarial framework

G = (U, V , E) is a bipartite graph generated by an oblivious adversary:
I |U| = n and |V | = T with T ≥ n.
I Each node in U has a budget bu,t ∈ N. Budget dynamics:

bu,t = bu,t−1 − xu,t + 1t mod m=0, bu,0 = b0.

LIGHTBULB m is the parameter of the frequency of the refills.
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2 Matching size of Balance

Theorem: (Cherifa et al. 2024)
(informal)
For m ≥

√
T ,

CR(Balance) ≤ 1 − 1(
1 + 1

b0

)b0
.

Theorem:(Cherifa et al.
2024)(informal)
For m = o(

√
T ),

CR(Balance) ≤ 1 − (1 − α)
e(1−α)︸ ︷︷ ︸

'0.73325...

.

where α is defined by 1
2 =

∫ α

0
xex

1−x dx .

LIGHTBULB No deterministic algorithm can beat Balance.
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More realistic setting:
online matching on stochastic block model (Cherifa

et al. 2025)

Clément Calauzènes Vianney Perchet
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3 From Erdös - Rényi graph to stochastic block model

Constraint 1 + Constraint 3: online arrivals and community structure.

Erdös - Rényi model
I All ads are statistically identical.
I Every user connects to every ads

with same probability p.
I Matching decisions depend only on

availability (budget 0 or 1).
I
❌ no community structure.

Stochastic block model
I Users and ads are divided into

communities.
I Edge probability depends on class

pair pc,d .
I Each class evolves differently and

affects the others.

Matching depends on class proportions and compatibility matrix.
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3 Problem setting

Let G be a bipartite graph
G = (U, V , E).
I |U| = n offline nodes,

|V | = T ≥ n online arrivals.
I Offline and online nodes have

classes in C and D.
I Each u ∈ U and v ∈ V has a

class c(u) ∼ µ and d(v) ∼ ν.
I Conditional on classes,

Pr[(u, v) ∈ E ] = pc(u), d(v).

U V

p1,2

p 3,1

V1

V2

U1

U2

u1

u2

u3

v1

v2

v3

LIGHTBULB Generalization of Erdös - Rényi
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3 Notations and assumptions

I The sparse regime: every pc,d = ac,d
n .

I bc is the proportion of nodes in class c.
I Mc(t) is the number of matched nodes

in class c.
I M(t) :=

∑
c∈C Mc(t) is the size of the

matching constructed.
I Fc(t) is the set of unmatched nodes of

class c.

Two cases of study:
I The probabilities pc,d are

known.
I The probabilities pc,d are

unknown.

M. Cherifa Dynamics and learning in online allocation problems 33/50



3 Known pc,d - Myopic strategy

Goal. When a node of class d arrives, pick an offline class c that yields a good chance
of matching without exhausting capacities.

Idea. Pre-compute an optimal plan Q∗ such that:

Q∗ ∈ arg max
Q

∑
c,d

Q(c, d)p(c, d),

s.t
∑

d

Q(c, d)ν(d) = bc , ∀c ∈ C,

and
∑

c

Q(c, d)ν(d) = ν(d), ∀d ∈ D.

🧠 Intuition. Q∗ is a smart allocation: It sends each type-d arrival to the most
promising offline classes while respecting capacities.
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3 Known pc,d - Myopic strategy

Algorithm 3: Myopic algorithm

Output: Updated matching M(t)
Compute the optimal Q∗.
for t ∈ [T ] do

Choose ct ∈ C at random with probability Q∗(ct , d t)/ν(d t).
if Fct (t) = ∅ then

M(t) = M(t − 1).
else

M(t) = M(t − 1) ∪ {(ut , t)} for ut ∼ unif(Fct (t)).
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3 From Erdős–Rényi to SBM: difficulty for Myopic

I Myopic in Erdős–Rényi (homogeneous case)
I One global matching process M(t).
I M(t)

n
w.h.p.−−−→ y(t), ẏ(t) = 1 − e−a(1−y(t)).

I Scalar ODE, explicit closed form for y .

I Myopic in SBM (structured, heterogeneous case)
I One matching process per class c: Mc(t).
I With high probability, for each class c: Mc (t)

n
w.h.p.−−−→ yc(t), where yc solves

ẏc(t) =
∑D

d=1

(
1 − e−ac,d

(
bc −yc (t)

))
Q∗(c, d).

I No closed form: depends on the class c, all neighbor classes d, and the
optimal plan Q∗.
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3 Known pc,d - the matching size of Myopic strategy

Theorem: (Cherifa et al. 2025) (informal)
Let T = αn, and yc : [0, α] → R be the solution of the following ODE,

ẏc(s) =
D∑

d=1

(
1 − e−ac,d (bc −yc (s)))Q∗(c, d),

yc(0) = 0.

Then, for each class c ∈ C, Mc(t) satisfies w.h.p,

|Mc(t)/n − yc(t/n)| ≤ OLc ,α(n−1/3).

Moreover,yc = ỹc − ec , with ỹc(t) = bc
(
1 − e−tLc

)
, and ec satisfies,

ec(t) ≤ Jc(1 − e−Lc t)/Lc .

where, Jc and Lc are known constants.
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3 Known pc,d - Balance algorithm

Algorithm 4: Balance

Output: Updated matching M(t)
for t ∈ [T ] do

Choose ct = arg maxc∈[C ]
∑D

j=1(1 − (1 − ac,j
n )nbc −Mc (t))ν(j)

if Fct (t) = ∅ then
M(t) = M(t − 1).

else
M(t) = M(t − 1) ∪ {(ut , t)} for ut ∼ unif(Fct (t)).
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3 Known pc,d - Balance is harder than Greedy/Myopic

Greedy: smooth decisions
I Matching probability is a continuous function of the state.
I ODE approximation works.

Balance: switches to the class with max availability.
I Drift has an indicator of the maximizer:

E
[
Mc(t+1)−Mc(t) | n, M(t)

]
= Hc,bc ,n(Mc(t))·1

{
Hc,bc ,n(Mc(t)) = max

k∈[C ]
Hk,bk ,n(Mk(t))

}
︸ ︷︷ ︸

discontinuous at ties

Ban Drift is not Lipschitz ⇒ ODE method fails.

ARROW-CIRCLE-RIGHT A stronger tool is needed: Differential Inclusions.

Hc,bc ,n(x) =
∑D

d=1(1 − (1 − ac,d/n)nbc −x ) ν(d)
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3 Differential Inclusions

ODE: one direction at each point

ẋ(t) = f (x(t)).

Differential inclusion: many possible directions

ẋ(t) ∈ F (x(t)),

where F (x) is a set-valued map.

It is needed here because:
I Balance switches between classes: drift is not continuous.
I DI naturally handles switching and multiple possible drifts.
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3 Convergence to a Differential Inclusion (Gast et al. 2011)

Question-Circle Does the matching process converge to a DI?

Setting (Markov chain with small drift and noise)

Y N(k+1) = Y N(k) + gN(Y N(k)) + UN(k+1)

Assumptions
I Vanishing drift: gN = γN f N , with γN → 0.
I Small noise: UN is a martingale difference (no big jumps).

Key idea: If the drift is discontinuous, the limit is set-valued:

ẏ(t) ∈ F (y(t)).

With high probability, Y N stays close to a trajectory of ẏ(t) ∈ F (y(t)).

LIGHTBULB Even with discontinuities, the stochastic process has a deterministic limit.
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3 Known pc,d – matching size of Balance

Our contribution. the matching process under Balance converges to a
deterministic differential inclusion.

Theorem (informal) (Cherifa et al. 2025)
Let T = αn, and let m be the unique solution of the differential inclusion

ṁ(t) ∈ F (m(t)) := conv
{

fc,bc (mc(t)) ec : c ∈ arg max
k∈[C ]

fk,bk (mk(t))
}

,

where fc,bc (x) =
∑D

d=1

(
1 − e−ac,d (bc −x))ν(d). Then, for all t ∈ [T ] and c ∈ C, with high

probability, ∣∣∣∣Mc(t)
n − mc(t/n)

∣∣∣∣ ≤ Aα,c,L/n,

Here, mc is is known in closed form.

ec is the c-th basis vector of R|C| and L, Aα,c,L, are known constants.

→ First analysis of Balance in sparse random SBM.
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3 Unknown pc,d – from Matching to Bandit Learning

In practice: the SBM parameters
are unknown.

I The connection rates ac,d are not
given to the algorithm.

I Matching outcomes are the only
source of information.

I The platform must decide who to
match and learn connection
probabilities at the same time.

Decision-making + Statistical
learning are coupled.

Bandit View 🥷🏻
I Each class c ∈ C behaves like an

arm.
I Playing arm ct at time t reveals a

Bernoulli reward:

rewardt = 1{match succeeds}

I We must balance:
I Exploration: try classes to

estimate ac,d .
I Exploitation: match with the

best-estimated class.
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3 The strategy - ETC-balance

Our goal: match with unknown pc,d = ac,d/n.

🔧 Try each classes in C to build estimates of Dc,d =
(
1 − ac,d

n
)nbc −Mc (t).

Explore then commit (ETC)
For t ≤ T explore:
I try all classes uniformly,
I collect match outcomes (match/ no match),
I estimate all Dc,d .

🔧 Freeze the estimates, and run Balance.
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3 The regret

For each class c ∈ C,
I Mc(t) is the number of matches made by the Balance up to time t.
I M̂c(t) is the number of matches made by ETC − balance up to time t.

Theorem: (Cherifa et al. 2025) (informal)
Let R(T ) =

∑
c∈C Mc(T ) − M̂c(T ) denote the regret of ETC − balance.

Suppose the exploration phase lasts for T explore = T
q+3

4 , for some 0 < q < 1.
Then the regret satisfies:

R(T ) = Oq(T
q+3

4 ).
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3 ETC instead of UCB

Goal: Control the regret

R(T ) =
∑
c∈C

(
Mc(T ) − M̂c(T )

)
≤
∑
c∈C

(
|Mc(T ) − nmc(T/n)|︸ ︷︷ ︸
DI approximation for Balance

+ |nmc(T/n) − nm̂c(T/n)|︸ ︷︷ ︸
DI learning error

− |M̂c(T ) − nm̂c(t)(T/n)|︸ ︷︷ ︸
DI error for the learning algorithm

)
If UCB is used:
I m̂c is hard to solve.
I The bonus term in estimation

changes at every round
UCBc,d(t) = D̂c,d +

√
α log t
Tc,d

.

I UCB mixes exploration and
exploitation.

With ETC:
I m̂c has the same structure as mc with

estimated parameters.
I Explore first: collect unbiased

information.
I Then freeze estimates ⇒ Balance has

fixed parameters.
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4 Conclusion and future works

I More sophisticated refills dynamics.

In our setting:

bu,t = bu,t−1 − xu,t + rt

Where rt is a Bernoulli random variable.

Generalization:
I Poisson Refills : rt is a realization of

Poisson random variables.
I State dependant refills, nodes with low

budgets get refills.

I Simple refills dynamics in Geometric random graphs and configuration
models.

I Stochastic block model with budget refills.
1. Matching will depend on budgets and on classes affinities.
2. More coupled system of ODE to analyze.
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Thank you 😃🙏🏻
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