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Abstract

While online bipartite matching has gained significant attention in recent years,
existing analyses in stochastic settings fail to capture the performance of algorithms
on heterogeneous graphs, such as those incorporating inter-group affinities or
other social network structures. In this work, we address this gap by studying
online bipartite matching within the stochastic block model (SBM). A fixed set of
offline nodes is matched to a stream of online arrivals, with connections governed
probabilistically by latent class memberships. We analyze two natural algorithms:
a Myopic policy that greedily matches each arrival to the most compatible class,
and the Ex-ante Balance algorithm, which accounts for both compatibility and
remaining capacity. For the Myopic algorithm, we prove that the size of the
matching converges, with high probability, to the solution of an ordinary differential
equation (ODE), for which we provide a tractable approximation along with explicit
error bounds. For the Ex-ante Balance algorithm, we demonstrate convergence
of the matching size to a differential inclusion and derive an explicit limiting
solution. Lastly, we explore the impact of estimating the connection probabilities
between classes online, which introduces an exploration-exploitation trade-off.

Introduction

Finding matchings in bipartite graphs is a fundamental problem at the intersection of graph theory [17,
45], network science, and combinatorial optimization [31, 40]. In this context, a bipartite graph
G = (N , T , E) is defined by two disjoint node sets, N and T , and a set of edges E ⊂ N × T
connecting them. These graphs naturally model systems where entities from one group are to be
matched with entities from another, such as tasks to agents, products to consumers, or ads to users. A
matching in such a graph refers to a subset of edges with no shared endpoints — ensuring that each
entity is involved in at most one pair. The core challenge lies in computing optimal matchings that
respect resource constraints and maximize some utility or coverage. This problem has significant
practical relevance, especially in operations research, where it is linked to the classical assignment
problem [19].

Recent real-world applications, particularly in online advertising, ride-hailing platforms, and real-time
job allocation, have attracted significant interest in the online version of the matching problem [38].
In this setting, nodes in N (e.g., advertisers or servers) are fixed and known in advance, while nodes
in T (e.g., users or requests) arrive sequentially. When a new node t ∈ T arrives, the algorithm
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must decide on the spot whether to match it to an available node n ∈ N , such that (n, t) ∈ E ,
with the constraint that each node can be matched at most once. These decisions are irrevocable,
making the problem both practically and theoretically challenging. The central goal is to design
algorithms that construct a maximum matching—that is, one that covers as many nodes as possible.
Typically, such algorithms are analyzed in one of two ways: by approximating the size of the resulting
matching, or by evaluating their competitive ratio, defined as the worst-case ratio between the size of
the algorithm’s matching and that of an optimal matching computed with full knowledge of the graph
in advance.

Online matching has been explored through several theoretical lenses, most notably the adversarial
and stochastic frameworks [38]. In the adversarial setting, the graph and arrival sequence are designed
to be worst-case, providing robust but conservative performance guarantees. In contrast, stochastic
models assume randomness in either the graph structure or the arrival process [9], allowing for more
realistic analyses and often stronger guarantees. Within this stochastic line of work, much attention
has been given to Erdős–Rényi-type models [35], where edges are included independently with a
fixed probability. While such models are analytically tractable and provide insights, they fail to
capture complex patterns like community structure, heterogeneity, and group-based interactions
observed in real-world systems [20].

To address these limitations, the stochastic block model (SBM) has emerged as a powerful alternative
[20, 2]. SBM introduces latent classes (or communities) and allows edge probabilities to depend on
class membership, thereby capturing structured heterogeneity—such as homophily (the tendency of
similar nodes to connect more frequently)[36], core-periphery patterns (where a densely connected
"core" group links to many others while "periphery" nodes have fewer connections) [6], or inter-group
affinities (specific preferences or tendencies for nodes in one group to connect with nodes in another
group)[3]. This makes SBM particularly well-suited for modeling interactions in social networks,
recommendation engines, and online marketplaces, where the likelihood of a match depends not
just on individual attributes but also on group-level dynamics [26]. In the context of online bipartite
matching, this leads naturally to the bipartite stochastic block model, where one partition consists of
fixed agents and the other of arriving users, both belonging to latent classes that govern connection
probabilities [28].

We study online matching in the bipartite stochastic block model, focusing on the sparse regime, where
the average degree of each node remains bounded as the system grows. This regime is particularly
relevant in practice, as real-world platforms typically feature users or items that interact with only a
small subset of the population. Sparsity not only reflects these empirical network structures but also
introduces significant analytical challenges. Formally, we consider a bipartite graph G = (N , T , E),
where N is a fixed set of nodes and T is a set of nodes that arrive sequentially. Each node n ∈ N
is independently assigned a class c(n) ∈ C according to a distribution µ(n), and each arriving node
t ∈ T is independently assigned a class d(t) ∈ D with distribution ν(t). Conditional on these class
assignments, an edge between n and t is present independently with probability pn,t, which depends
on their respective classes. A defining feature of this model, motivated by real-world constraints, is
that the set of edges incident to each arriving node is not known in advance. Instead, when a node
t ∈ T arrives, the algorithm observes only then which edges exist between t and the nodes inN . This
assumption captures a key operational reality in many systems, where information about potential
interactions is revealed only upon arrival or activation of a new entity. For example, in online job
platforms, the compatibility between a newly posted job (a node in T ) and existing freelancers (nodes
in N ) becomes clear only when the job description is published. The system cannot precompute all
possible matches due to computational constraints and the dynamic, user-driven nature of postings.
In recommendation systems, user preferences are inferred from behavior observed at login, and only
then can the platform determine which content is relevant — effectively modeling the appearance of
edges at the moment of interaction. Given this online nature of information revelation, an algorithm
must operate under uncertainty: it observes each vertex in T sequentially and must decide, upon
arrival, whether and how to match it to an available node in N , without knowledge of future arrivals
or their connections. In this work, we introduce and analyze two natural algorithms designed for this
setting:

• Myopic: Upon the arrival of a node t ∈ T , the algorithm chooses a compatible class c∗ ∈ C
and attempts to match t with an available node from this class.

2



• Ex-ante Balance: This algorithm selects the class with the highest probability of a
successful match, considering both compatibility and current availability.

We focus on the Myopic and Ex-ante Balance algorithms because they are simple, practical,
and reflect decision-making heuristics commonly used in real-world systems. Notably, while the
Myopic algorithm has been studied in stochastic models, the Ex-ante Balance algorithm—despite
its widespread use—has only been analyzed in adversarial settings. Its theoretical performance in
structured stochastic environments, such as the bipartite stochastic block model, remains unexplored.
These algorithms are appealing not only for their practical relevance but also for their interpretability
and ease of implementation, which is particularly valuable in applications like online marketplaces,
content recommendation, or allocation systems. We first analyze them under the assumption that
the compatibility probabilities pn,t between user and item classes are known. This setting provides
a tractable analytical framework, allowing us to rigorously characterize the fluid-limit behavior
of both algorithms. While this fully informed setting offers valuable insights, it often does not
reflect the realities faced by many real-world systems. Motivated by these practical constraints, we
then turn to the more realistic case where the probabilities pn,t are not known a priori. In many
applications—such as recommendation engines or online platforms—the interaction propensities
between user and item types must be inferred over time through observed outcomes. This naturally
gives rise to a bandit setting, where the algorithm must estimate the unknown affinities pn,t from
binary feedback (indicating whether a match succeeded or failed), while simultaneously making
irrevocable matching decisions. This introduces an exploration-exploitation trade-off that is absent in
the known-parameter regime. To address this challenge, we propose and analyze a bandit version of
the Ex-ante Balance algorithm, which learns class affinities dynamically while aiming to preserve
strong matching performance.

Our two main contributions, correspond to the two settings considered:

• When pn,t are known: We provide a fluid-limit analysis of both Myopic and
Ex-ante Balance algorithms in the sparse bipartite stochastic block model. Specifically,

– We prove that the matching size obtained by the Myopic algorithm is, with high
probability, close to the solution of a specific ordinary differential equation. Due to the
complexity of solving this equation in closed form, we derive a tractable approximation
and show that the resulting error remains small.

– For the Ex-ante Balance algorithm, we prove that the matching size converges with
high probability to a solution of a differential inclusion—a generalization of ODEs that
captures the algorithm’s discontinuous decision rules. To our knowledge, this is the
first use of differential inclusions to analyze online matching problems.

– We extend this analysis to a generalized version of Ex-ante Balance, where the
decision rule incorporates both connection probabilities and real-time availability, and
show that its performance similarly converges to a well-defined differential inclusion.

• When pn,t are unknown: We study ETC− balance algorithm a bandit extension of the
Ex-ante Balance algorithm, where the compatibility probabilities pn,t are unknown and
must be learned over time. In this setting, the algorithm receives binary feedback for each
matching attempt and must estimate the latent affinities between classes while making
sequential, irrevocable decisions. We analyze the regret of this learning-based algorithm
and prove that it is of order O(T

q+3
4 ) for 0 < q < 1 using stochastic approximations and

differential inclusions tools.

Related works

Online bipartite matching has been extensively studied, particularly in adversarial and stochastic
models ([22, 37] for a survey). In the adversarial setting, the Greedy algorithm guarantees a 1/2
competitive ratio, improving to 1− 1/e under random arrivals [18]. The Ranking algorithm achieves
the optimal 1− 1/e bound in this setting and performs even better with random arrivals [25, 13, 32].
In contrast, stochastic models assume known distributions over vertex types, often in the i.i.d.
setting. This allows improved performance, with algorithms reaching competitive ratios up to 0.711
[33, 23, 11, 21]. However, the i.i.d. model overlooks graph structure, and in many practical or
average-case settings, simple heuristics can match or outperform these algorithms [8]. This has
motivated the study of stochastic input models that better reflect real-world graphs. Consequently,
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another line of work focuses on applying online algorithms to specific random graph families. A
foundational example is online matching in Erdős–Rényi graphs, particularly in the sparse regime
where each edge exists independently with probability c/N [35, 7, 14]. Even for simple strategies like
Greedy, analysis in this setting is nontrivial and yields valuable insights. The configuration model
further generalizes this approach by prescribing degree distributions for vertices [39, 1]. Additional
generalizations of Erdős–Rényi have introduced dynamic elements—for instance, models where node
degrees evolve over time to reflect changing environments or behaviors [12]. The stochastic block
model (SBM), a structured extension of Erdős–Rényi that captures community structure, has also been
studied in the online setting. In the dense regime, [42] analyze max-weight policies and show they
can achieve asymptotically perfect matchings. In the general SBM, [10] extend lower bounds from
the Erdős–Rényi case, demonstrating that the 0.837 bound from [35] remains tight when communities
have equal expected degrees. They propose several efficient heuristics for online matching in SBMs,
which perform well empirically, but none are proven to achieve asymptotic optimality. However,
all these works focus primarily on dense regimes or heuristics without theoretical guarantees. In
particular, the sparse regime of SBM, which is highly relevant for many real-world applications where
connections are scarce and structured, has received limited attention. From another perspective, bandit
algorithms offer a general framework for decision-making under uncertainty, where limited feedback
guides sequential choices. These models focus on balancing between exploration and exploitation and
have found broad application in online learning and resource allocation [30, 41]. While conceptually
distinct, they share core challenges with online matching and offer complementary insights.

1 Model

We consider the online bipartite matching problem, where the nodes on one side arrive sequentially,
with an additional graph structure given by a stochastic block model. The latter is defined by a
bipartite graph G = (N , T , E), whereN = [N ] := {1, . . . , N} is the set of “offline” nodes, T = [T ]
is the set of “online” nodes, and E ⊂ N × T is the set of edges. This underlying graph is random,
in the sense that each edge (n, t) ∈ N × T belongs to E independently with some probability. The
block model assumes that each node belongs to a latent class: we denote by C := [C] the set of
classes on the offline side, and by D := [D] the set of classes on the online side. Each offline node
n ∈ N is assigned a class c(n) ∈ C, and each online node t ∈ T is assigned a class d(t) ∈ D. These
assignments are drawn independently: nodes on the offline side are sampled from a distribution µ over
C, and nodes on the online side are sampled from a distribution ν over D. Given the class labels, the
edge (n, t) appears in E with probability pn,t = p

(
c(n), d(t)

)
∈ [0, 1], where p = (p(c, d))c,d∈C×D

is a class-to-class affinity matrix. In this work, we focus on the sparse regime, where the underlying
graph remains sparse as the number of offline nodes N grows. More precisely, we assume the
existence of a non-negative matrix a = (ac,d) ∈ RC×D

+ such that p(c, d) =
ac,d
N . Moreover, we

assume that ac,d ≤ a for all c ∈ C, d ∈ D, where a ∈ (0, N) is a fixed constant. This choice ensures
that each offline node has a bounded expected degree, even as N → ∞, which reflects realistic
constraints in large-scale platforms where individual users or items interact with only a limited
number of others.

As mentioned in the introduction, in the online matching problem, an algorithm ALG observes
sequentially the vertices in T and constructs on the fly a matching (i.e., a subset of edges such that
any vertex belongs to at most one of them) irrevocably: after seeing the vertex t ∈ T , it can decide
to add irrevocably an edge (n, t) ∈ E to the current matching if t does not belong to an edge of the
matching yet.

We shall now introduce some notations. We denote by bc the proportion of nodes of N of class
c ∈ C. We also assume that there exists some scaling factor α > 0 such that T = αN (as we will
consider asymptotic results when N is large). We will also define the Boolean variable mn(t) equal
to 1 if, and only if, the vertex u has been included in the matching by ALG before the vertex t arrives
(otherwise mn(t) = 0). Additionally, we denote by Nc := {n ∈ N , c(n) = c} the set of nodes of
class c ∈ C, byMc(t) = {n ∈ Nc,mn(t) = 1} the set of vertices of class c that are already matched
before seeing vertex t ∈ T (we denote by Mc(t) its cardinality) and by M(t) :=

∑
c∈C Mc(t) the

size of the matching constructed so far. We also denote by Fc(t) = {u ∈ Nc\Mc(t), (n, t) ∈ E} the
set of vertices of class c that are not matched so far (thus free), but such that (n, t) belongs to E (they
are the “available neighbors” of t of class c), and by C(t) = {c ∈ [C]|Fc(t) ̸= ∅} the set of classes
that have available nodes at time t ∈ [T ]. Finally, we shall denote by ei the i-th basis vector of RC .
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2 Known compatibility probabilities

2.1 A warm-up: Myopic algorithm

In this section, we present a simple yet foundational algorithm, Myopic, which serves as a baseline
for more sophisticated algorithms presented later. This algorithm is designed to make fast, greedy
decisions for matching, without attempting to look ahead or anticipate future availability. Specifically,
when a new vertex t ∈ T arrives (e.g., a request or a user), the policy selects a class ct ∈ C according
to a fixed probability distribution, and then attempts to match t to an available node within that
class. The selection is made without verifying beforehand whether any nodes in the chosen class
are actually available at time t. As a result, Myopic is computationally simple and immediate in
its decisions, but it may sometimes fail to make a match due to resource unavailability. Despite
its reactive nature, Myopic is carefully designed to respect class-specific budget constraints and to
maximize the expected long-term success rate of matches. The key component of the algorithm is the
computation of a probability matrix Q∗(c, d), which solves the following optimization problem:

Q∗ ∈ argmax
Q

∑
c,d

Q(c, d)p(c, d),

s.t
∑
d

Q(c, d)ν(d) = bc, ∀c ∈ C and
∑
c

Q(c, d)ν(d) = ν(d),∀d ∈ D.

In particular, Q∗ represents the optimal transport plan that maps the distribution ν to the budget vector
b, minimizing the transport cost with respect to −p(c, d). This matrix can be computed efficiently
using the Hungarian algorithm, with a computational complexity of O(CD(C +D)). Notably, the
special case where there is only one class (i.e., C = D = 1) reduces to the setting studied in [34].

Algorithm 1: Myopic policy
Output: Updated matching M(t)

1 Compute the optimal transport plan Q∗

2 for t ∈ [T ] do
3 Choose ct ∈ C at random with probability Q∗(ct, dt)/ν(dt)
4 if Fct(t) = ∅ then
5 M(t) =M(t− 1)

6 else
7 M(t) =M(t− 1) ∪ {(nt, t)} for nt ∼ unif(Fct(t))

In order to understand the behavior of the Myopic policy in large-scale matching markets, we consider
a deterministic approximation via an ordinary differential equation (ODE). The guiding intuition is
that, as the number of agents grows (nodes in the graph), stochastic variability in the system averages
out, and the evolution of the system can be captured by a smooth deterministic trajectory. However,
the ODE associated with the dynamics of the Myopic policy Equation (1) is nonlinear and does not
generally admit a closed-form solution, especially due to the complex structure of the underlying
graph encoded in the parameters ac,d and Q∗(c, d). This makes direct analysis challenging. In certain
structured settings, however, the ODE becomes more tractable. For instance, when ac,d = c for all
(c, d) which corresponds to the Erdős–Rényi model, the ODE simplifies and admits a closed-form
solution, as shown in [35]. This illustrates how the structure of the graph can significantly affect the
tractability of the analysis and motivates the need for approximation techniques in the more general,
heterogeneous case.

To address this, we introduce a simplified surrogate ODE, which approximates the behavior of the
original system while being analytically tractable. This auxiliary equation has a closed-form solution
ỹc(t), allowing us to extract structural insights such as convergence rates and equilibrium behavior.
Crucially, we rigorously control the error between the true ODE solution yc(t) and the approximate
solution ỹc(t) by bounding it with an explicit error term ec(t).

The next theorem formalizes this two-step approximation strategy. It shows that:

• The normalized matching size produced by the Myopic policy closely follows the ODE
solution yc(t) with high probability.
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• The ODE solution is well-approximated by the simpler function ỹc(t) with a small and
explicitly controlled error.

Theorem 1. Let yc : [0, α]→ R be the solution of the following ODE{
ẏc(s) =

∑D
d=1

(
1− e−ac,d(bc−yc(s))

)
Q∗(c, d)

yc(0) = 0
(1)

Then, for each class c ∈ C, the matching size Mc(t) produced by Myopic satisfies, for all t ∈ [T ]∣∣∣∣Mc(t)

N
− yc(t/N)

∣∣∣∣ ≤ 3Lce
αLc

N1/3
, where Lc =

D∑
d=1

ac,dQ
∗(c, d) (2)

with probability at least 1− 2Ce−N
1/3L2

c/8α. Moreover, for c ∈ [C], yc(t) = ỹc(t)− ec(t), where
ec(0) = 0, and ỹc(t) = bc − bc exp (−tLc), and ec satisfies,

ec(t) ≤
Jc
Lc

(1− e−Lct)

Where Jc =
b2c
2

∑D
d=1 a

2
c,dQ

∗(c, d).

2.2 Ex-ante Balance

The Ex-ante Balance algorithm builds on the limitations of the Myopic policy by try-
ing to take into account node availability. When a node of class c(t) arrives, the Myopic
policy selects a compatible class c purely based on potential compatibility between the
classes—without considering whether any unmatched nodes from that class are actually avail-
able at that moment. In contrast, Ex-ante Balance takes a more informed approach: it
chooses the class c that maximizes the probability that at least one unmatched node is avail-
able and connected to the arriving node. This probability is estimated by the expression
1 −

(
1− ac,j

N

)Nbc−Mc(t), which captures the likelihood of an edge existing under a stochas-
tic block model, where edge probabilities between classes are governed by parameters ac,j .

Algorithm 2: Ex-ante Balance
Output: Updated matching M(t)

1 for t ∈ [T ] do
2 Choose ct = argmaxc∈[1,C]

∑D
j=1(1− (1− ac,j

N )Nbc−Mc(t))ν(j)

3 if Fct(t) = ∅ then
4 M(t) =M(t− 1)
5 else
6 M(t) =M(t− 1) ∪ {(nt, t)} for nt ∼ unif(Fct(t))

A key distinction between the Myopic and Ex-ante Balance policies lies in how they respond to
the evolving state of the system—and this difference has important implications for their large-scale
behavior. The Myopic approach selects a class based solely on static compatibility between node
types, leading to smooth dynamics. As the system scales, the randomness introduced by node arrivals
averages out, and the evolution of the system can be accurately described by an ordinary differential
equation (ODE). This continuous, deterministic approximation leverages the fact that the Myopic
policy’s decision rule is smooth and Lipschitz-continuous. In contrast, the Ex-ante Balance policy
takes a more strategic decision by selecting the class that maximizes the actual match probability.
This introduces discontinuities into the process—small variations in the system state can lead to
abrupt changes in the selected class. As a result, the system no longer evolves smoothly, and the
assumptions required for ODE convergence break down.

To address this, we turn to the framework of differential inclusions, a generalization of ODEs designed
to handle such discontinuous dynamics. Rather than prescribing a single trajectory, a differential
inclusion allows the system’s evolution to follow a set of possible directions at each point, capturing
the non-smooth transitions in behavior driven by abrupt changes in decision rules. The following
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theorem formalizes this connection by proving that, with high probability, the normalized matching
sizes produced by Ex-ante Balance converge to a solution of a differential inclusion. For an
introduction to differential inclusions and their relevance in this context, see Appendix A.
Theorem 2. Let m be the unique solution of the differential inclusion

ṁ ∈ F (m) := conv

{
fc,bc(mc)ec ; c ∈ argmax

k∈[C]

fk,bk(mk)

}
,

which is the convex hull of the mappings

fc,bc(x) =

D∑
d=1

(1− e−ac,d(bc−x))ν(d).

Then the matching built by Ex-ante Balance satisfies for all t ∈ [T ] and c ∈ C, with probability at
least 1− bα

Nϵ2 ,∣∣∣∣Mc(t)

N
−mc(t/N)

∣∣∣∣ ≤ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c, (3)

The different constants in are defined by L = maxc∈[C]

∑D
d=1 ac,dν(d), δc = 1

N

∑D
d=1

ac,d
e ν(d),

Kα = (cα+ ϵ)ecα/c, ϵ as defined in Lemma 11 and c in Lemma 7, Uc =
∑D
d=1(1− e−ac,dbc)ν(d),

Aα,c = Uc(U
2
c + 14Uc

3 + 2Kα), Bα,c = 2U2
c + 4Lδc + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα.

As Ex-ante Balance algorithm always picks the class with the highest probability of connection,
which decreases in case of match, it tends to progressively equalize these probabilities across the
classes in C. Once two classes have their probabilities (almost) equalized, these stay equal over time
by decreasing at the same rate. This generates phases, in which the k "first" classes (with highest
initial probability) have their probabilities equalized, decreasing at the same rate, up until reaching
the probability of the (k + 1)th class. This phasing allows to obtain an explicit formula for m. The
remainder of the section introduces the exact formula and some intuitions of how it is built, while the
verification proof is deferred to Appendix C.2.

In the large-N limit, the marginal probability that the next online node is connected to at least one
node in class c ∈ C, given a vector β ∈ RC+ representing the proportions of available nodes in each
class, is given by: fc,βc(z) =

∑
d∈D

(
1− e−ac,d(βc−z)

)
ν(d) . W.l.o.g., we assume for the analysis

that the elements of C are ordered by decreasing marginal probability of receiving at least one edge at
the initial time step – i.e. f1,b1(0) ≥ f2,b2(0) ≥ · · · ≥ fC,bC (0). Additionally, as ac,d > 0 , fc,βc is
strictly decreasing and thus invertible, with f−1

c,βc
also strictly decreasing.

During phase k, the C − k last classes are not selected at all, while the k first classes have their
probabilities equalized, decreasing at the same rate. Given the budgets β ∈ RC+ at the beginning of
the phase, the number of nodes matched during the phase, in each of the k classes, at time t, ends up
evolving following µk,β(t) defined as the solution of the following separable ODE{

dµk,β

Fk,β(µk,β) = dt

µk,β(0) = 0
where Fk,β =

(
k∑
c=1

f−1
c,βc

)−1

.

Note that, as dµk,β

dt > 0, µk,β is strictly increasing, positive and invertible.

To assemble the phases, and provide the full expression of m, two sequences need to be defined.
First, the sequence of time-steps (tk)k∈[C] defines the phases. Then

(
β(k)

)
k∈[C]

describes the
proportion of available nodes per class at the start of each phase. They are defined as follows:

∀c, k ∈ [C], β(k)
c =

{
bc if k ≤ c
β
(k−1)
c − f−1

c,β(k−1)

(
fk,β(1)(0)

)
otherwise

(4)

∀k ∈ [C + 1], tk =

{
0 if k = 1

min
(
T, tk−1 + µ−1

k−1,β(k−1)

(
F−1
k−1,β(k−1)

(
fk,β(1)(0)

)))
otherwise

(5)
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Theorem 3. For any c ∈ C, the function

m∗
c : t 7→ (bc − β(kt)

c ) +
(
f−1
c,β(kt)

(Fkt,β(kt)(µkt,β(kt)(t− tkt)))
)
+

(6)

where kt = max{k ∈ [C] : t > tk}, is thel solution of the differential inclusion defined in Theorem 2.

Figure 1 illustrates the accuracy of m∗
c(t/N) to estimate Mc(t)

N in the sparse regime.

2.3 Ex-post Balance

While the Ex-ante Balance policy improves upon the purely compatibility-driven Myopic ap-
proach by considering the probability of successful matches, it still relies on an expected availability
model—it selects the class that likely has unmatched nodes, without verifying their presence. This can
lead to wasted opportunities when the chosen class ends up being empty. To address this limitation,
we introduce the Ex-post Balance policy, which takes an additional, more grounded step. Instead
of only maximizing the expected match probability, Ex-post Balance ensures that the selected
class actually contains at least one available node at the time of decision. This additional check
prevents the algorithm from targeting unavailable options, making it more efficient. We prove that the
matching size under Ex-post Balance converges with high probability to a differential inclusion.
This differential inclusion differs from the one in Theorem 2, as it explicitly accounts for real-time
availability constraints. Full details and results are provided in Appendix C.3.

3 Unknown compatibility probabilities

In many real-world applications, the underlying parameters of the graph—such as the connection
probabilities between node classes or the distribution of arriving node types—are not known a priori.
These parameters may be shaped by latent variables, evolve over time, or be inferred only through
noisy and partial observations. Consequently, algorithms must operate under uncertainty and learn
these parameters dynamically in order to make effective matching decisions. In this section, we study
the setting in which the connection probabilities ac,d are unknown and must be estimated online.
This transforms the problem into a bandit setting, where each class c ∈ C can be viewed as an arm,
and upon choosing class ct at time t, a Bernoulli reward is observed—indicating whether a successful
match occurred between the arriving node and an available node in class ct.

3.1 ETC− balance

Algorithm 3 presents the ETC− balance policy, which combines a fixed-duration Explore-Then-
Commit (ETC) strategy with the Ex-ante Balance rule for class selection. The algorithm proceeds
in two phases. During the exploration phase, which lasts for a fixed number of rounds Texplore, arriving
nodes are matched by selecting classes uniformly at random. This allows the algorithm to collect
data on the outcomes of triplets (c, d,m), where c ∈ C, d ∈ D, and m is the current matching size
of the class c. We let Tc,d,m denote the number of times the triplet (c, d,m) has been observed.
After this phase, the algorithm enters the commitment phase and uses the collected data to estimate
the match failure probabilities. Specifically, it estimates Dc,d(m) =

(
1− ac,d

N

)Nbc−m using an
estimator D̂c,d(m), whose form and concentration properties are given in ??. These estimates are
then incorporated into the Ex-ante Balance rule to select the class c that maximizes the expected
success probability, weighted by the type distribution ν(d).

3.2 Regret

For each class i ∈ C, let Mi(t) and M̂i(t) denote the number of matches made by the
Ex-ante Balance and ETC− balance algorithms, respectively, up to time t. We define the regret
of ETC− balance as the total difference in matching performance across all classes when compared
to Ex-ante Balance, which has full knowledge of the match probabilities. In other words, the
regret quantifies the cumulative loss incurred by ETC− balance due to not knowing the match
probabilities in advance. The following result shows that this regret grows at most on the order of
O(N (q+3)/4) for some 0 < q < 1.
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Algorithm 3: ETC− balance

Input: T , ν(d), N , Texplore, confidence level δ
Output: Matching M(t)

1 Init:M(0) = ∅, Mc(0) = 0, Tc,d,m(0) = 0, D̂c,d(m) = 1
2 for t = 1 to T do
3 Node t of type d(t) arrives
4 if t ≤ Texplore then
5 Select ct uniformly at random
6 else
7 foreach c ∈ [C] do
8 Let m =Mc(t− 1), s(m) = bc

bc−m/N

9 Compute D̂c,d(m)

10 Choose ct = argmaxc
∑
d 1− D̂c,d(Mc(t−1))ν(d)

11 if Fct(t) ̸= ∅ then
12 Match (nt, t) for nt ∼ unif(Fct(t)), updateM(t), Mct(t), and Yct,d(t)(t) = 1
13 else
14 No match, Yct,d(t)(t) = 0

15 Update Tct,d(t),Mct (t)
← Tct,d(t),Mct (t)

+ 1

Figure 1: Illustration of the matching size for the different methods. T = 50000, N = 5000, C = 5,
D = 6 and simulations are averaged over 20 trajectories. 1. As expected the ex-post versions of
the algorithms perform better than their ex-ante counterparts. 2. The fluid limit m∗ (dark) is an
accurate estimator of the actual empirical trajectory of Ex-ante Balance (red). 3. A UCB version
of balance can be built using the confidence set from ?? and performs empirically better than ETC.
Yet, its analysis remains an open question.

Theorem 4. Let R(T ) =
∑
i∈C Mi(T )− M̂i(T ) denote the regret of ETC− balance. Suppose the

exploration phase lasts for Texplore = T
q+3
4 , for some 0 < q < 1. Then the regret satisfies

R(T ) = O(T
q+3
4 ).

4 Conclusion

We studied online bipartite matching within the Stochastic Block Model (SBM), capturing structured
heterogeneity in real-world networks through class-dependent connection probabilities. We analyzed
two main algorithms under known probabilities: the Myopic policy, which is simple but limited
by ignoring availability, and the Ex-ante Balance algorithm, which accounts for compatibility
and capacity, and is shown to converge to a differential inclusion. When the probabilities are
unknown, we introduced ETC− balance, a bandit-based extension that learns affinities over time and
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achieves sublinear regret. Simulations confirm that UCB-based methods outperform ETC− balance,
while Ex-ante Balance under known probabilities closely matches actual outcomes, validating
its effectiveness. A promising future research direction is to analyze UCB in this setting using
differential inclusion tools, to better understand its asymptotic behavior and theoretical guarantees.

References
[1] A. Aamand, J. Y. Chen, and P. Indyk. (optimal) online bipartite matching with degree in-

formation. In A. H. Oh, A. Agarwal, D. Belgrave, and K. Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[2] E. Abbe. Community detection and stochastic block models: Recent developments. Journal of
Machine Learning Research, 18(177):1–86, 2018.

[3] E. M. Airoldi, D. M. Blei, S. E. Fienberg, and E. P. Xing. Mixed membership stochastic
blockmodels. In Advances in Neural Information Processing Systems (NeurIPS), 2008.

[4] J.-P. Aubin and A. Cellina. Differential Inclusions: Set-Valued Maps and Viability Theory,
volume 264 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag, Berlin, 1984.

[5] B. Bollobás. Random Graphs. Cambridge University Press, 2001.

[6] S. P. Borgatti and M. G. Everett. Models of core/periphery structures. Social Networks, 21(4):
375–395, 2000.

[7] A. Borodin, C. Karavasilis, and D. Pankratov. Greedy bipartite matching in random type poisson
arrival model, 2018.

[8] A. Borodin, C. Karavasilis, and D. Pankratov. An experimental study of algorithms for online
bipartite matching. ACM J. Exp. Algorithmics, 25, mar 2020. ISSN 1084-6654. doi: 10.1145/
3379552.

[9] A. Borodin, C. MacRury, and A. Rakheja. Bipartite stochastic matching: Online, random order,
and i.i.d. models. 04 2020. doi: 10.48550/arXiv.2004.14304.

[10] A. Brandenberger, B. Chin, N. S. Sheffield, and D. Shyamal. Matching Algorithms in the Sparse
Stochastic Block Model. In C. Mailler and S. Wild, editors, 35th International Conference on
Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA
2024), volume 302 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–
16:21, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN
978-3-95977-329-4. doi: 10.4230/LIPIcs.AofA.2024.16.

[11] B. Brubach, K. A. Sankararaman, A. Srinivasan, and P. Xu. Online stochastic matching: New
algorithms and bounds. Algorithmica, 82:2737 – 2783, 2016.

[12] M. Cherifa, C. Calauzenes, and V. Perchet. Dynamic online matching with budget refills. 05
2024. doi: 10.48550/arXiv.2405.09920.

[13] N. R. Devanur, K. Jain, and R. D. Kleinberg. Randomized primal-dual analysis of ranking for
online bipartite matching. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, page 101–107, USA, 2013. Society for Industrial and
Applied Mathematics. ISBN 9781611972511.

[14] M. Dyer, A. Frieze, and B. Pittel. The average performance of the greedy matching algorithm.
The Annals of Applied Probability, 3(2):526–552, 1993.

[15] A. F. Filippov. Differential Equations with Discontinuous Right-Hand Sides, volume 18 of
Mathematics and Its Applications (Soviet Series). Kluwer Academic Publishers, Dordrecht,
1988. Translated from the Russian.

[16] N. Gast and B. Gaujal. Markov chains with discontinuous drifts have differential inclusions
limits. Application to stochastic stability and mean field approximation. Research Report
RR-7315, Apr. 2011.

10



[17] C. D. Godsil. Matchings and walks in graphs. J. Graph Theory, 5:285–297, 1981.

[18] G. Goel and A. Mehta. Online budgeted matching in random input models with applications to
adwords. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA ’08, page 982–991, USA, 2008. Society for Industrial and Applied Mathematics.

[19] E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Online perfect matching and mobile
computing. In Algorithms and Data Structures: 4th International Workshop, WADS’95 Kingston,
Canada, August 16–18, 1995 Proceedings 4, pages 194–205. Springer, 1995.

[20] P. W. Holland, K. B. Laskey, and S. Leinhardt. Stochastic blockmodels: First steps. Social
Networks, 5(2):109–137, 1983.

[21] Z. Huang, X. Shu, and S. Yan. The power of multiple choices in online stochastic matching.
In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2022, page 91–103, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
9781450392648. doi: 10.1145/3519935.3520046.

[22] Z. Huang, Z. G. Tang, and D. Wajc. Online matching: A brief survey. SIGecom Exch., 22(1):
135–158, Oct. 2024. doi: 10.1145/3699824.3699837.

[23] P. Jaillet and X. Lu. Online stochastic matching: New algorithms with better bounds. Mathe-
matics of Operations Research, 39(3):624–646, 2014. ISSN 0364765X, 15265471.
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A Differential inclusions

This section aims to introduce the fundamental concepts of differential inclusions. Unlike ordinary
differential equations (ODE), where the derivative of the unknown function is determined by a
single-valued map, differential inclusions generalize this by allowing the derivative to lie within a
set-valued map. This broader framework is well-suited for modeling dynamical systems that involve
uncertainty, discontinuities, or control constraints.

A.1 Set-Valued Maps

Let F : Rn → Rn denote a set-valued map, i.e a mapping which assigns to each point x ∈ Rn a
subset F (x) ⊆ Rn. We consider in general that F (x) is nonempty for all x ∈ Rn. The notation
⟨x, y⟩ denotes the standard inner product on Rd, and the norm is given by ∥x∥ =

√
⟨x, x⟩. For a set

A ⊂ Rd, we define its norm as ∥A∥ = supx∈A ∥x∥.
A set-valued map F is said to be:

• Upper semicontinuous (u.s.c.): A set-valued map F : Rn → Rn is upper semicontinuous
at a point y ∈ Rn if for every sequence y(n) → y and any sequence xn ∈ F (y(n)) such that
xn → x, it holds that x ∈ F (y).

• Locally bounded if for every compact set K ⊂ Rn, there exists a constant M such that,

sup
x∈K

sup
v∈F (x)

∥v∥ ≤M.

• Measurable if its graph is measurable in the product sigma-algebra on Rn × Rn.

• One sided Lipschitz with constant L if for all z, z̃ ∈ Rn and for z ∈ F (y), z̃ ∈ F (ỹ),

⟨y − ỹ, z − z̃⟩ ≤ L||y − ỹ||2

A.2 Definition of differential inclusions

Definition 1. Let F : Rn → Rn be a set valued and T > 0. A differential inclusion is defined as,

ẋ(t) ∈ F (x(t)) for t ∈ [0, T ] (7)

together with an initial condition,
x(0) = x0

Let I ⊆ R, a function x : I → Rn is a solution to the differential inclusion defined in Equation (68)
with initial condition x(0) = x0 if there exists a function ϕ : I → Rn such that:

• For all t ∈ I: x(t) = x(0) +
∫ t
0
ϕ(s)ds.

• For almost every t ∈ I ϕ(t) ∈ F (x(t)).

A.3 Existence and uniqueness of the solution

Proposition. ([15, 4, 29])

• If F is upper semicontinuous and if there exists c such that ∥F (y)∥ ≤ c(1 + ∥y∥) then for
any initial condition x0, ẋ ∈ F (x) has at least one solution on [0,+∞) with x(0) = x0.

• If F is one-sided Lipschitz, then for all T > 0 there exists at most one solution of ẋ ∈ F (x)
on [0, T ]

If F is upper semicontinuous and one-sided Lipschitz then for T > 0, ẋ ∈ F (x) has a unique solution
on [0, T ].
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B Myopic algorithm

This section is organized into two parts. In the first part, we analyze the Myopic algorithm. In the
second part, we show that, under certain assumptions, the model reduces to the Erdős–Rényi case
studied in [35]. We begin by considering the following Myopic algorithm, as introduced in the main
paper:

Algorithm 4: Myopic policy
Output: Updated matching M(t)

1 Compute the optimal transport plan Q∗

2 for t ∈ [T ] do
3 Choose ct ∈ C at random with probability Q∗(ct, dt)/ν(dt)
4 if Fct(t) = ∅ then
5 M(t) =M(t− 1)

6 else
7 M(t) =M(t− 1) ∪ {(nt, t)} for nt ∼ unif(Fct(t))

B.1 Proof of Theorem 1

Theorem 1. Let yc : [0, α]→ R be the solution of the following ODE{
ẏc(s) =

∑D
d=1

(
1− e−ac,d(bc−yc(s))

)
Q∗(c, d)

yc(0) = 0
(1)

Then, for each class c ∈ C, the matching size Mc(t) produced by Myopic satisfies, for all t ∈ [T ]∣∣∣∣Mc(t)

N
− yc(t/N)

∣∣∣∣ ≤ 3Lce
αLc

N1/3
, where Lc =

D∑
d=1

ac,dQ
∗(c, d) (2)

with probability at least 1− 2Ce−N
1/3L2

c/8α. Moreover, for c ∈ [C], yc(t) = ỹc(t)− ec(t), where
ec(0) = 0, and ỹc(t) = bc − bc exp (−tLc), and ec satisfies,

ec(t) ≤
Jc
Lc

(1− e−Lct)

Where Jc =
b2c
2

∑D
d=1 a

2
c,dQ

∗(c, d).

The proof of Theorem 1 is based on the Wormald theorem [43, 44] and is structured as follows:

• We first define the evolution of Mc(t), the size of the matching constructed by Myopic in
class c ∈ [C] at time t ∈ [T ].

• We then verify that Mc(t) satisfies the conditions required to apply the Wormald theorem
[43, 44].

• We apply the Wormald theorem [43, 44] to analyze the behavior of Mc(t).
• Next, we construct an approximate solution to the differential equation that serves as a

continuous approximation of Mc(t).
• Finally, we derive an explicit bound on the error between the true solution and its approxi-

mation.

Let M(t) = (M1(t), . . . ,MC(t)) denote the vector of matching sizes in each class c ∈ [C] con-
structed by the Myopic algorithm. For each class c ∈ [C], the matching size evolves according to the
following dynamics:

Mc(t+ 1) =Mc(t) + 1{∃n∈Nc(t) s.t c∗t=c and mn(t+1)=1} (8)

Here, c∗t represents the class selected by Myopic at time t.

The first step is to compute the expected one-step change in Mc(t), the size of the matching con-
structed by Myopic. This is formalized in the following lemma.
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Lemma 1. For t ∈ [T ], c ∈ [C] and for any B = (b1, . . . , bC), the expectation of the one-step
change of Mc(t), when matching is constructed using Myopic is given by,

E[Mc(t+ 1)−Mc(t)|M(t), B] = Fc(t,M1(t), . . . ,MC(t)) (9)

where Fc(t,M1(t), . . . ,MC(t)) =
∑D
d=1

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
Q∗(c, d)

Proof. Moving to conditional expectation gives,

E[Mc(t+ 1)−Mc(t)|M(t), B] (10)
= E[1{∃n∈Nc(t),c∗t=c,mn(t+1)=1}|M(t), B] (11)

= P(∃n ∈ Nc(t), c∗t = c,mn(t+ 1) = 1|M(t), B) (12)

=

D∑
d=1

P(∃n ∈ Nc(t), c∗t = c,mn(t+ 1) = 1|M(t), B, d(t+ 1) = d)ν(d) (13)

=

D∑
d=1

P(∃n ∈ Nc(t),mn(t+ 1) = 1|M(t), B, d(t+ 1) = d, c∗t = c)ν(d)

P(c∗t = c|M(t), B, d(t+ 1) = d) (14)

=

D∑
d=1

(
1− (1− p(c, d))Nbc−Mc(t)

)
ν(d)Q∗(c, d)/ν(d) (15)

=

D∑
d=1

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
Q∗(c, d) (16)

The following lemma establishes the Lipschitz continuity of the function fc(x) =
∑D
d=1(1 −

e−ac,d(Nbc−x))Q∗(c, d).

Lemma 2. For x ≤ Nbc and c ∈ [C], the function fc is Lc-Lipschitz with Lc =
∑D
d=1 ac,dQ

∗(c, d).

Proof. For x ≤ Nbc, the function fc is a sum of continuous and differentiable functions on R. Its
derivative is given by

|f ′c(x)| =
D∑
d=1

e−ac,d(Nbc−x)ac,dQ
∗(c, d) ≤

D∑
d=1

ac,dQ
∗(c, d). (17)

Since fc is differentiable, the Mean Value Theorem implies that for any x, y ∈ R with x, y ≤ Nbc,
there exists ξ ∈ (x, y) such that

|fc(x)− fc(y)| = |f ′c(ξ)| |x− y| ≤ Lc|x− y|, (18)

where the Lipschitz constant is defined by Lc =
∑D
d=1 ac,dQ

∗(c, d).

The following lemma is a technical lemma,
Lemma 3. For n > 0, a ≤ n/2 and 0 ≤ w ≤ 1,

0 ≤ e−aw −
(
1− a

n

)nw
≤ a

ne

Proof. Using the following inequalities: 1− x ≥ e−x−x2

for x ≤ 1
2 and 1− x ≤ e−x for x ≥ 0, we

obtain e−aw
(
1− a2w

n

)
≤
(
1− a

n

)nw ≤ e−aw. The result follows by rearranging terms and using

that awe−aw ≤ 1/e.

The next lemma bounds the distance between Fc defined in Lemma 1 and fc,
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Lemma 4. For c ∈ [C],

|Fc(t,M1(t), . . . ,MC(t))− fc(Mc(t))| ≤
D∑
d=1

ac,d
Ne

Q∗(c, d) (19)

Proof. For c ∈ [C],

|Fc(t,M1(t), . . . ,MC(t))− fc(Mc(t))| (20)

=

∣∣∣∣∣
D∑
d=1

e−ac,d(Nbc−Mc(t))Q∗(c, d)−
(
1− ac,d

N

)Nbc−Mc(t)

Q∗(c, d)

∣∣∣∣∣ (21)

≤
D∑
d=1

ac,d
Ne

Q∗(c, d) (Lemma 3) (22)

Now we are ready to prove Theorem 1.

Proof. From Lemma 1, we have

E[Mc(t+ 1)−Mc(t)|M(t), B] =

D∑
d=1

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
Q∗(c, d) (23)

Let Yc(s) =
Mc(sN)

N denote the normalized matching size in class c ∈ [C], and define the vector
Y(s) = (Y1(s), . . . , YC(s)) for 0 ≤ s ≤ T/N . Then, we obtain:

E[Yc(s+ 1/N)− Yc(s)|Y(s), B]

1/N
=

D∑
d=1

(
1−

(
1− ac,d

N

)Nbc−NYc(s)
)
Q∗(c, d) (24)

As N →∞, we find:

for s ∈
[
T

N

]
ẏc(s) =

D∑
d=1

(1− e−ac,d(bc−yc(s))Q∗(c, d), and yc(0) = 0

Applying Wormald’s theorem [43], and considering the domain 0 ≤ ys ≤ 1 with β = 1 (by the
nature of the matching process), we define the Lipschitz constant as Lc =

∑D
d=1 ac,dQ

∗(c, d)

(see Lemma 2). Additionally, we set δ =
∑D
d=1

ac,d
Ne Q

∗(c, d) as in Lemma 4, which gives
λ = N−1/3

∑D
d=1 ac,dQ

∗(c, d). Therefore, with probability at least 1− 2Ce−N
1/3L2

c/8α the approx-
imation holds.

|Mc(t)−Nyc(t/n)| ≤ 3eLcαN2/3Lc (25)

Where yc satisfies for s ∈ [T/n],

ẏc(s) =

D∑
d=1

(
1− e−ac,d(bc−yc(s))

)
Q∗(c, d) (26)

yc(0) = 0

Now we want to approximate the solution of Equation (26). To simplify the analysis, we introduce
the change of variable zc(t) = yc(t)− bc where t ∈ [T/N ]. Under this transformation, Equation (26)
becomes: {

żc(t) =
∑D
d=1

(
1− eac,dzc(t)

)
Q∗(c, d)

zc(0) = −bc
(27)
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The right-hand side of Equation (27) involves terms of the form 1− eac,dzc . Since −bc ≤ zc ≤ 0, we
can use the Taylor expansion:

1− eac,dzc = −ac,dzc +O(z2c ).

Consider now z̃c be the solution of the following linearized differential equation with initial condition
z̃c(0) = −bc and t ∈ [T/N ]:

z̃′c(t) = −z̃c(t)
D∑
d=1

ac,dQ
∗(c, d). (28)

The solution to Equation (28) is explicitly given by:

z̃c(t) = −bc exp

(
−t

D∑
d=1

ac,dQ
∗(c, d)

)
.

With z̃c in hand, we are ready to bound the error between the exact solution of Equation (27) and its
approximation z̃c. Let ec = z̃c − zc be the approximation error, its derivative for t ∈ [T/N ] is given
by,

e′c(t) = z̃′c(t)− z′c(t) (29)

=

D∑
d=1

(−ac,dz̃c(t)− 1 + eac,dzc(t))Q∗(c, d) (30)

Since zc ∈ [−bc, 0], we have the inequality

1− eac,dzc(t) ≤ −ac,dzc(t) for all d = 1, . . . , D.

This implies,

żc(t) =

D∑
d=1

(
1− eac,dzc(t)

)
Q∗(c, d) ≤ −zc(t)

D∑
d=1

ac,dQ
∗(c, d).

This upper bound matches the right-hand side of the linearized system Equation (28) evaluated at
zc(t). Since both solutions share the same initial condition, zc(0) = z̃c(0) = −bc, we can apply the
comparison principle [27, Chapter 3, Lemma 3.4].

It follows that
zc(t) ≤ z̃c(t) for all t ∈ [T/N ],

which implies that the approximation error

ec(t) := z̃c(t)− zc(t) ≥ 0.

For all t ∈ [T/N ], using Taylor expansion of order 2,

e′c(t) ≤
D∑
d=1

(
−ac,dz̃c(t) + ac,dzc(t) +

a2c,dz
2
c (t)

2

)
Q∗(c, d) (31)

e′c(t) ≤
D∑
d=1

(
−ac,dec(t) +

a2c,db
2
c

2

)
Q∗(c, d) (using zc ∈ [−bc, 0]) (32)

e′c(t) ≤ −ec(t)Lc + Jc (33)

We multiply Equation (33) by eLct,

e′c(t)e
Lct + Lce

Lctec(t) ≤ JceLct (34)

Integrating both sides,

etLcec(t)− ec(0) ≤ Jc
eLct − 1

Lc
(35)
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Thus,

ec(t) ≤
Jc
Lc

(1− e−Lct) + e(0)e−Lct (36)

ec(t) ≤
Jc
Lc

(1− e−Lct) (37)

Thus, for t ∈ [0, TN ] ,
zc(t) = z̃c(t)− ec(t)

where ec(t) satisfies Equation (37), with Lc =
∑D
d=1 ac,dQ

∗(c, d) and Jc =
∑D
d=1

ac,db
2
c

2 Q∗(c, d).

Thus replacing zc(t) by yc(t)− bc we get the final result.

B.2 Recovering the Erdős–Rényi case

Consider the special case where the connection probability depends only on the class c, that is,
p(c, d) = ac

n . In this setting, the graph structure intoduced in Section 1 simplifies to an Erdős–Rényi
random graph [5, 24]. Under this assumption, Equation (26) reduces to:

żc(t) =
(
1− e−aczc(t)

) D∑
d=1

Q∗(c, d), (38)

−acżc(t) e−aczc(t)

e−aczc(t) − 1
= −ac

D∑
d=1

Q∗(c, d). (39)

Integrating both sides with respect to time yields:

ln
∣∣∣e−aczc(t) − 1

∣∣∣− ln
∣∣e−acbc − 1

∣∣ = −act D∑
d=1

Q∗(c, d). (40)

Solving for zc(t), we obtain the closed-form expression:

zc(t) = −
1

ac
ln
(
1 +

(
e−acbc − 1

)
e−act

∑D
d=1Q

∗(c,d)
)
. (41)

This shows that when the model is reduced to the Erdős–Rényi setting, we obtain an exact solution to
the corresponding differential equation. Consequently, with high probability, the size of the matching
in each class c ∈ [C] concentrates around zc as given in Equation (41). These results are in close
agreement with those found in [34], which also examined the dynamics of matching in Erdős–Rényi
graphs and observed similar asymptotic behavior.

C Balance algorithm

This section is organized into two parts. First, we analyze the case where matching is performed
using the Ex-ante Balance algorithm, as defined in the main paper. Next, we extend the analysis
to the Ex-post Balance algorithm.

C.1 Ex-ante Balance

We consider the following Ex-ante Balance algorithm.

Algorithm 5: Ex-ante Balance
Output: Updated matching M(t)

1 for t ∈ [T ] do
2 Choose ct = argmaxc∈[1,C]

∑D
d=1(1− (1− ac,j

N )Nbc−Mc(t))ν(d)

3 if Fct(t) = ∅ then
4 M(t) =M(t− 1)
5 else
6 M(t) =M(t− 1) ∪ {(nt, t)} for nt ∼ unif(Fct(t))
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C.1.1 Proof of Theorem 2

Theorem 2. Let m be the unique solution of the differential inclusion

ṁ ∈ F (m) := conv

{
fc,bc(mc)ec ; c ∈ argmax

k∈[C]

fk,bk(mk)

}
,

which is the convex hull of the mappings

fc,bc(x) =

D∑
d=1

(1− e−ac,d(bc−x))ν(d).

Then the matching built by Ex-ante Balance satisfies for all t ∈ [T ] and c ∈ C, with probability at
least 1− bα

Nϵ2 ,∣∣∣∣Mc(t)

N
−mc(t/N)

∣∣∣∣ ≤ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c, (3)

The different constants in are defined by L = maxc∈[C]

∑D
d=1 ac,dν(d), δc = 1

N

∑D
d=1

ac,d
e ν(d),

Kα = (cα+ ϵ)ecα/c, ϵ as defined in Lemma 11 and c in Lemma 7, Uc =
∑D
d=1(1− e−ac,dbc)ν(d),

Aα,c = Uc(U
2
c + 14Uc

3 + 2Kα), Bα,c = 2U2
c + 4Lδc + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα.

The proof of Theorem 2 is structured as follows:

• We first characterize the drift of the process Mc.
• Next, we verify that Mc satisfies the assumptions required by Theorem 1 in [16].
• Finally, we define the associated differential inclusion and apply Theorem 4 from [16] to

derive an explicit rate of convergence.

The following lemma computes the drift of the process Mc for c ∈ [C], defined as the con-
ditional expectation E[Mc(t + 1) − Mc(t)|B,M(t)], where B = (b1, . . . , bC) and M(t) =
(M1(t), . . . ,MC(t)).
Lemma 5. For c ∈ [C],

E[Mc(t+ 1)−Mc(t)|B,M(t)] = Hc,bc,N (Mc(t))1{max
k∈[C]

Hk,bk,N (Mk(t))=Hc,bc,N (Mc(t))}

where Hc,bc,N (x) =
∑D
d=1

(
1−

(
1− ac,d

N

)Nbc−x)
ν(d).

Proof. For c ∈ [C], as defined previously, Mc(t) is the number of matched nodes in the class c, for
t ∈ [T ], Mc(t) follows the dynamics,

Mc(t+ 1) =Mc(t) + 1{∃n∈Nc(t) s.t c∗t=c and mn(t+1)=1} (42)

Let c∗t denote the class selected by the Ex-ante Balance algorithm. We define the expected one-step
change of the process Mc(t), for each c ∈ [C] and t ∈ [T ], as follows:

E[Mc(t+ 1)−Mc(t)|N,M(t)] (43)
= P(∃n ∈ Nc(t) s.t c∗t = c and mn(t+ 1) = 1|M(t), B) (44)

=

D∑
d=1

P(∃n ∈ Nc(t) s.t c∗t = c and mn(t+ 1) = 1|M(t), B, d(t+ 1) = d)ν(d) (45)

=

D∑
d=1

P(∃n ∈ Nc(t) s.t mn(t+ 1) = 1|M(t), B, d(t+ 1) = d, c∗t = c)ν(d)

P(c∗t = c|M(t), R, d(t+ 1) = d) (46)
= Hc,bc,N (Mc(t))1{max

k∈[C]
Hk,bk,N (Mk(t))=Hc,bc,N (Mc(t))} (47)

where Hc,bc,N (x) =
∑D
d=1

(
1−

(
1− ac,d

N

)Nbc−x)
ν(d).
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The next lemma defines a martingale difference sequence based on the process Mc, and proves that
its second moment is bounded.

Lemma 6. Let c ∈ [C] and t ∈ [T ]. Define the process Qc(t+1) =Mc(t+1)−Mc(t)−E[Mc(t+
1) −Mc(t)|M(t), B]. Then (Qc(t))t∈[T ] is a martingale difference sequence with respect to the
filtration generated by M(t). Moreover, there exists a constant b > 0 such that:

E[Qc(t+ 1)|M(t), B] = 0

and
E[|Qc(t+ 1)|2|M(t), B] ≤ b

Proof. By direct computation, we obtain

E[Qc(t+ 1)|M(t), B] = 0.

Furthermore, from the definition of the matching process, for all c ∈ [C] we have

|Mc(t+ 1)−Mc(t)| ≤ 1, ∀t ∈ [T ].

This implies that the second moment of Qc(t+ 1) is bounded.

The next result proves the first assumption of Theorem 1 in [16].

Lemma 7. For c ∈ [C] and t ∈ [T ], let Hc,bc,N (y) = Hc,bc,N (y)1{max
k∈[C]

Hk,bk,N (y)=Hc,bc,N (y)}, it

satisfies,
∀y ≤ Nbc, |Hc,bc,N (y)| ≤ c(1 + |y|)

with αc = ln
(
1− minj∈[D](ac,j)

N

)
, c = max(|1− eαcNbc |, |αceαcNbc |).

Proof.

|Hc,bc,N (y)| ≤

∣∣∣∣∣
D∑
d=1

(
1−

(
1− ac,d

N

)Nbc−y)
ν(d)

∣∣∣∣∣ (48)

=

∣∣∣∣∣1−
D∑
d=1

eln(1−
ac,d
N )(Nbc−y)ν(d)

∣∣∣∣∣ (49)

≤

∣∣∣∣∣1−
D∑
d=1

e
ln
(
1−

minj(ac,j)

N

)
(Nbc−y)ν(d)

∣∣∣∣∣ (50)

≤
∣∣∣∣1− eln(1−minj(ac,j)

N

)
(Nbc−y)

∣∣∣∣ (51)

≤
∣∣1− eαcNbc(1 + αcy)

∣∣ (52)

≤ |1− eαcNbc |+ |αceαcNbcy| (53)
≤ c(1 + |y|) (54)

with αc = ln
(
1− minj(ac,j)

N

)
, c = max(|1− eαcNbc |, |αceαcNbc |).

The following technical lemma provides a bound on the distance between Hc,bc,N and its limit as N
becomes large.

Lemma 8. For c ∈ [C],∣∣∣∣∣
D∑
d=1

(
1− e−ac,d(bc−Mc(t)/N)

)
ν(d)−

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
ν(d)

∣∣∣∣∣ ≤
D∑
d=1

ac,d
Ne

ν(d)
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Proof. Let A =
∣∣∣∑D

d=1

(
1− e−ac,d(bc−Mc(t)/N)

)
ν(d)−

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
ν(d)

∣∣∣,
A ≤

D∑
d=1

∣∣∣∣(1− e−ac,d(bc−Mc(t)/N)
)
ν(d)−

(
1−

(
1− ac,d

N

)Nbc−Mc(t)
)
ν(d)

∣∣∣∣ (55)

≤
D∑
d=1

∣∣∣∣e−ac,d(bc−Mc(t)/N)ν(d)−
(
1− ac,d

N

)Nbc−Mc(t)

ν(d)

∣∣∣∣ (56)

≤
D∑
d=1

ac,d
Ne

ν(d) (Lemma 3) (57)

The following lemma shows that the function fc,bc , defined as the limit of Hc,bc,N as N →∞ and
given by fc,bc(x) =

∑D
d=1

(
1− e−ac,d(bc−x)

)
ν(d), is Lc-Lipschitz continuous.

Lemma 9. (Lipschitz condition) For c ∈ [C], the function fc,bc(x) =
∑D
d=1(1− e−ac,d(bc−x))ν(d)

is Lipschitz continuous with constant Lc =
∑D
d=1 ac,dν(d).

Proof. Let x, y such that x ≤ bc and y ≤ bc for all c ∈ [C],

|fc,bc(x)− fc,bc(y)| =

∣∣∣∣∣
D∑
d=1

(e−ac,d(bc−y) − e−ac,d(bc−x))ν(d)

∣∣∣∣∣ (58)

By mean value Theorem, there exists ξ ∈ (x, y) such that we have,

|fc,bc(x)− fc,bc(y)| ≤ |x− y|
D∑
d=1

e−ac,d(bc−ξ)ac,dν(d) (59)

≤ |x− y|
D∑
d=1

ac,dν(d) (60)

The two following lemma provides a technical bound essential for deriving the explicit rate of
convergence in Theorem 2. For t ∈ [T ] let,

Vc(t) =
1

N

t∑
k=0

Qc(k + 1) (61)

and

Mc(t+ 1)

N
=
Mc(0)

N
+

1

N

t∑
l=0

Hc,bc,N (Mc(t)) +
1

N

t∑
l=0

Qc(l + 1) (62)

=
1

N

t∑
l=0

Hc,bc,N (Mc(t)) +
1

N

t∑
l=0

Qc(l + 1) (63)

Lemma 10. For all T,N > 0, and for all ϵ > 0,

P
(

sup
0≤k≤T

|Vc(k)| ≥ ϵ
)
≤ Tb

N2ϵ2

Proof. Since E [Qc(t+ 1)|M(t), B] = 0 and E
[
|Qc(t+ 1)|2|M(t), B

]
≤ b, we have E[|Vc(t)|2] ≤

tb
N2 ≤ Tb

N2 for all t ≤ T . Applying Kolmogorov’s inequality (maximal inequality) for martingales to
the martingale V leads to the bound of the lemma.
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Lemma 11. For c ∈ [C], let Mc be defined as in Equation (62) with |Hc,bc,N (y)| ≤ c(1 + |y|). Let
y denote the solution of the differential equation associated with F that is defined in Equation (68).

If we denote by ϵ := supl≤t |Vc(l)| , then

max

 sup
0≤t≤T

|Mc(t)|,
∑

0≤τ≤T/n

|m(τ)|

 ≤ Kα

with Kα = (cα+ ϵ) ecα/c with c as defined in Lemma 7.

Proof. By definition of Mc in Equation (62) and Lemma 10, we have,

|Mc(t+ 1)/N | ≤ 1

N

t∑
l=0

c(1 + |Mc(l)|) + ϵ (64)

=
tc

N
+ ϵ+

c

N

t∑
l=1

|Mc(l)| (65)

≤ (
Tc

N
+ ϵ)ecT/N/c (66)

The final inequality follows from the discrete Gronwall’s lemma. Substituting T = αN then yields
the desired result.

The next lemma proves that F defined in Theorem 2 is upper semicontinuous,

Lemma 12. (Upper semicontinuous) Let fc,bc : R→ R be continuous for each c ∈ [C], and define
the set-valued map F (m) = conv

(
fc,bc(mc)ec | c ∈ argmaxj∈[C] fj,bj (mj)

)
where ec is the c-th

standard basis vector in RC . Then F is upper semicontinuous as a set-valued map from RC to
subsets of RC .

Proof. Let (m(n))n∈N ⊂ RC be a sequence such that m(n) → m as n→∞, meaning:

∀c ∈ [C], m(n)
c → mc.

Let xn ∈ F (m(n)) be such that xn → x ∈ RC . We aim to show that x ∈ F (m).

Each xn ∈ F (m(n)) belongs to the convex hull:

F (m(n)) = conv

(
fc,bc(m

(n)
c )ec | c ∈ arg max

j∈[C]
fj,bj (m

(n)
j )

)
.

Because the index set [C] is finite, there are only finitely many possible argmax sets. Thus, we may
extract a subsequence (still denoted by n for simplicity) such that for some fixed A ⊆ [C],

arg max
j∈[C]

fj,bj (m
(n)
j ) = A for all large n.

Since each fj,bj is continuous and m(n)
j → mj , we have fj,bj (m

(n)
j ) → fj,bj (mj) for all j, and

hence:
max
j∈[C]

fj,bj (m
(n)
j )→ max

j∈[C]
fj(mj).

Therefore, for every i ∈ A,
fc,bc(mc) = max

j∈[C]
fj,bj (mj),

i.e., A ⊆ argmaxj∈[C] fj,bj (mj).

Now, each xn is a convex combination of the vectors fc,bc(m
(n)
c )ec with c ∈ A, and by continuity:

fc,bc(m
(n)
c )→ fc,bc(mc), so fc,bc(m

(n)
c )ec → fc,bc(mc)ec.
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Thus, xn → x implies that x lies in the convex hull of the limit points:

x ∈ conv (fc,bc(mc)ec | c ∈ A) ⊆ F (m),

since A ⊆ argmaxj∈[C] fj,bj (mj).

Hence, every limit point of a converging sequence (xn) with xn ∈ F (m(n)) lies in F (m), which
proves that F is upper semicontinuous.

With all the preparatory results established — in particular, Lemmas 6 and 7, which shows that Mc(t)
satisfies the assumptions of Theorem 1 in [16] — we are now ready to prove Theorem 2.

Proof. For all c ∈ [C] and τ ∈ [T/n], we consider the process M̃c(τ) defined by,

M̃c(τ + 1/n) = M̃c(τ) +
1

N
Hc,bc,N (M̃c(τ)) + Q̃c(τ + 1/n) (67)

where Q̃c(τ) = Qc(τn)
n with Qc as defined in Lemma 6,Hc,bc,N as defined in Lemma 7, and let

M̃(τ) = (M̃1(τ), . . . , M̃C(τ)).

When N →∞, and t ∈ [T ], the function Hc,bc,N converges to:

Hc,bc,N (Mc(t))→
D∑
d=1

(
1− e−ac,d(bc−

Mc(t)
N )

)
ν(d) = fc,bc(Mc(t)/N).

Let g(M̃) =

(
fc,bc(M̃c)1{max

k∈[C]
fk,bk(M̃k) = fc,bc(M̃c)}

)
c∈[C]

be the drift vector. According

to Lemma 7, each element of the drift vector satisfies the first assumption of Theorem 1 in [16].
Moreover, according to Lemma 6, Q̃c(τ +1/n) satisfies the second assumption of Theorem 1 in [16].
Since M̃c(0) = 0, based on Theorem 1 in [16], for all τ ∈ [T/n], M̃(τ) converges to m(τ), where
m is the solution of the following differential inclusion:

ṁ(τ) ∈ F (m(τ)) (68)

where F (m) = conv
(
fc,bc(mc)ec | c ∈ argmaxj∈[C] fj,bj (mj)

)
, and conv denotes the convex

hull.

According to Lemma 12 and Lemma 7, the differential inclusion Equation (68) admits at least one
solution m. To establish the uniqueness of this solution, it is sufficient to show that the set-valued
map F is one-sided Lipschitz. By Lemma 9, each function fc,bc is Lc-Lipschitz continuous for all
c ∈ [C], and let L = maxc∈[C] Lc. Let s, s′ ∈ RC and suppose z ∈ F (s), z′ ∈ F (s′). Then:

⟨z − z′, s− s′⟩ =
C∑
i=1

(si − s′i) (fi,bi(si)− fi,bi(s′i)) ≤
C∑
i=1

Li(si − s′i)2 ≤ L∥s− s′∥2. (69)

Thus F is one-sided Lipschitz with constant L, which guarantees the uniqueness of the solution
m to the differential inclusion Equation (68). To get the explicit rate of the convergence of M̃c to
mc, we use Theorem 4 of [16]. According to Lemma 6, for t ∈ [T ], E[|Qc(t+ 1)|2|M(t), B] ≤ b
and F is one sided Lipschitz with constant L = maxc∈[C] Lc where Lc is defined in Lemma 9.
Thus according to theorem 4 in [16], taking δc =

∑D
d=1

ac,d
Ne ν(d), Kα as defined in Lemma 11 and

Uc = sup0≤t≤T fc,bc(Mc(t)), taking Uc =
∑D
d=1(1 − e−ac,dbc)ν(d) we define Aα,c = Uc(U

2
c +

14Uc

3 + 2Kα), Bα,c = 2U2
c + 4Lδ + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα. We have,

P
(

sup
0≤t≤T

∣∣∣∣Mc(t)

N
−mc(t/N)

∣∣∣∣ ≥ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c

)
≤ bT

N2ϵ2

(70)
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C.2 Proof of Theorem 3

Theorem 3. For any c ∈ C, the function

m∗
c : t 7→ (bc − β(kt)

c ) +
(
f−1
c,β(kt)

(Fkt,β(kt)(µkt,β(kt)(t− tkt)))
)
+

(6)

where kt = max{k ∈ [C] : t > tk}, is thel solution of the differential inclusion defined in Theorem 2.

We need a few lemmas before going into the proof of the Theorem 3.
Lemma 13. ∀t ∈ R+,∀c ∈ C,

µc(t) =

{
bc − β

(kt)
c + f−1

c,β(kt)
(Fkt,β(kt)(µkt,β(kt)(t− tkt))) if c ≤ kt

0 otherwise
(71)

Proof. For t ≥ 0 and c > kt, (bc − β
(kt)
c ) = 0 by def of β(kt)

c . Then

By definition of kt, t ∈ [tkt , tkt+1).

t < tkt+1 ⇔ t < tkt + µ−1
kt,β(kt)

(
F−1
k−1,β(kt)

(
fkt+1,β(1)(0)

))
(72)

⇔ µkt,β(kt)(t− tkt) < F−1
kt,β(kt)

(
fkt+1,β(kt)(0)

)
(µkt,β(kt) is increasing) (73)

⇔ Fkt,β(kt)(µkt,β(kt)(t− tkt)) > fkt+1,β(kt)(0) (Fkt,β(kt) is decreasing) (74)

⇔ ∀c > kt, Fkt,β(kt)(µkt,β(kt)(t− tkt)) > fc,β(kt)(0) (Fkt,β(kt) is decreasing) (75)

⇔ ∀c > kt, f
−1
c,β(kt)

(Fkt,β(kt)(µkt,β(kt)(t− tkt))) < 0 (f−1
c,β(kt)

is decreasing) (76)

Lemma 14. ∀t ∈ R+,
∑
c∈C µc(t) = ∥b− β(kt)∥1 + µkt,β(kt) (t− tkt)

Proof. By definition, for any t ≥ 0, β(kt)
c ≤ bc, so

∑
c∈C (bc − β

(kt)
c ) = ∥b− β(kt)∥1. Let k ∈ [C]

be a phase.

∀t ∈ [tk, tk+1),
∑
c∈C

(
f−1
c,β(k)(Fk,β(k)(µk,β(k)(t− tk)))

)
+
= µk,β(k) (t− tk) (77)

⇔ ∀t ∈ [0, tk+1 − tk],
∑
c≤k

f−1
c,β(k)(Fk,β(k)(µk,β(k)(t))) = µk,β(k) (t) (78)

⇔ ∀s ∈
[
µ−1
k,β(k)(0), µ

−1
k,β(k)(tk+1 − tk)

]
,
∑
c≤k

f−1
c,β(k)(Fk,β(k)(s)) = s (79)

⇔ ∀u ∈
[
F−1
k,β(k)

(
µ−1
k,β(k)(tk+1 − tk)

)
, F−1

k,β(k)

(
µ−1
k,β(k)(0)

)]
,
∑
c≤k

f−1
c,β(k)(u) = F−1

k,β(k)(u)

(80)
The last line is TRUE by definition of Fk,β(k) .

Lemma 15. ∀t ∈ R+,∀c ∈ C

fc(µc(t)) =

{
Fkt,β(kt)(µkt,β(kt)(t− tkt)) if c ≤ kt
fc,Nbc(0) otherwise

(81)

and fc(µc(t)) ≤ fkt(µkt(t)).

Proof. For any t ∈ R+ and c ∈ C,
fc(µc(t)) = fc,bc(µc(t)) (82)

= f
c,β

(kt)
c

(
(β(kt)
c − bc + µc(t)

)
(83)

= f
c,β

(kt)
c

((
f−1
c,β(kt)

(Fkt,β(kt)(µkt,β(kt)(t− tkt)))
)
+

)
(84)

Lemma 13 allows to conclude.
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With all the preparatory lemmas established, we now proceed to the proof.

Proof. The result is proven by induction. For k ∈ [C], the induction hypothesis is

(Ak) ∀t ≤ tk, µ is such that µ̇(t) ∈ F (µ(t)).
For t ∈ [tk, tk+1), we have k = kt. Thus, restricted to the interval [tk, tk+1),

µ̇ ∈ F (µ)⇔ µ̇ ∈ conv

(
fc(µc)ec|c ∈ argmax

k∈[C]

fk(µk)

)
(85)

⇔ µ̇ ∈ Fkt,β(kt)(µkt,β(kt)(t− tkt))conv

(
ec|c ∈ argmax

k∈[C]

fk(µk)

)
(86)

⇔

∑
c≤k

µ̇c ≤ Fkt,β(kt)(µkt,β(kt)(t− tkt))

 and (∀c > k, µ̇c = 0) (87)

⇔
(
µ̇kt,β(kt) (t− tkt) ≤ Fkt,β(kt)(µkt,β(kt)(t− tkt))

)
and (∀c > k, µ̇c = 0) (88)

Going from (85) to (86) comes from Lemma 15. Going from (86) to (87) comes from the fact that
the convex hull of a set of basis vectors is the L1 ball restricted to the corresponding subspace.
Going from (87) to (88) comes from applying Lemma 14. Equation (88) is TRUE by definition of
µkt,β(kt)(t− tkt) for the first term and by applying Lemma 13 for the second term.

C.3 Ex-post Balance

While the Ex-ante Balance policy improves upon the purely compatibility-driven Myopic
approach by considering the probability of successful matches, it still relies on an expected
availability model—it selects the class that likely has unmatched nodes, without verifying
their presence. This can lead to wasted opportunities when the chosen class ends up being
empty. To address this limitation, we introduce the Ex-post Balance policy, which takes
an additional, more grounded step. Instead of only maximizing the expected match probabil-
ity, Ex-post Balance ensures that the selected class actually contains at least one available
node at the time of decision. This additional check prevents the algorithm from targeting un-
available options, making it more efficient. The formal procedure is detailed in Algorithm 6.

Algorithm 6: Ex-post Balance
Output: Updated matching M(t)

1 for t ∈ [T ] do
2 Choose ct = argmaxc∈C(t)

∑D
d=1(1− (1− ac,j

N )Nbc−Mc(t))ν(d)

3 if Fct(t) = ∅ then
4 M(t) =M(t− 1)
5 else
6 M(t) =M(t− 1) ∪ {(nt, t)} for nt ∼ unif(Fct(t))

The Ex-post Balance policy introduces an additional layer of selectivity compared to
Ex-ante Balance by explicitly verifying the presence of available nodes in the selected class
before committing to a match. While this refinement improves matching efficiency, it also increases
the non-smoothness of the system’s dynamics. In particular, the policy induces more discontinu-
ities—not only due to abrupt switches in the maximization rule, but also because the feasibility of a
class now depends on the cardinality of its unmatched nodes at each step. As a result, the evolution of
the matching process under Ex-post Balance cannot be captured by the same differential inclusion
used for Ex-ante Balance. Instead, it follows a more constrained inclusion, where the feasible
directions of evolution depend explicitly on whether a class still has unmatched capacity. The follow-
ing theorem formalizes this behavior, showing that, with high probability, the normalized matching
sizes converge to the solution of a new differential inclusion that incorporates both compatibility and
real-time availability constraints.
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Theorem 5. For all c ∈ [C], the matching size built by Ex-post Balance satisfies for all t ∈ [T ]
with probability 1− bα

Nϵ ,∣∣∣∣Mc(t)

N
−mc(t/N)

∣∣∣∣ ≤ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c (89)

wheremc is the c−th coordinate ofm the unique solution of the differential inclusion ṁ ∈ G(m) and

G(m) = conv
(
fc,bc(mc)ec|c = argmaxk∈[1,C] fk,bk(mk), bc > mc

)
with ec a basis vector of RC ,

L = maxc∈[1,C]

∑D
d=1 ac,dν(d), δc =

∑D
d=1

ac,d
Ne ν(d), Kα = (cα + ϵ)ecα/c with ϵ as defined in

Lemma 11 and c in Lemma 7, Uc =
∑D
d=1(1−e−ac,dbc)ν(d),Aα,c = Uc(U

2
c +

14Uc

3 +2Kα), Bα,c =

2U2
c + 4Lδc + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα.

As in Appendix C.1, our objective here is to approximate the matching size Mc produced by
Ex-post Balance for each class c ∈ [C]. Following the same approach as before, the first step
involves computing the drift of the process Mc.
Lemma 16. For c ∈ [C],

E[Mc(t+1)−Mc(t)|B,M(t)] = Hc,bc,N (Mc(t))1{max
k∈[C]

Hk,bk,N (Mk(t))=Hc,bc,N (Mc(t))}1{Nbc>Mc(t)}

Proof.

E[Mc(t+ 1)−Mc(t)|B,M(t)] = P(∃n ∈ Nc(t)\Mc(t)(t), c
∗ = c,mn(t+ 1) = 1|B,M(t))

(90)

=

D∑
d=1

P(∃n ∈ Nc(t)\Mc(t), c
∗ = c,mn(t+ 1) = 1|M(t), B, d(t+ 1) = d)ν(d) (91)

=

D∑
d=1

P(∃n ∈ Nc(t)\Mc(t),mn(t+ 1) = 1|M(t), B, d(t+ 1) = d, c∗ = c)ν(d)

P(c∗ = c|M(t), B, d(t+ 1) = d) (92)
= Hc,bc,N (Mc(t))1{max

k∈[C]
Hk,bk,N (Mk(t))=Hc,bc,N (Mc(t))}1{Nbc>Mc(t)} (93)

where Hc,bc,N (x) =
∑D
d=1

(
1−

(
1− ac,d

N

)Nbc−x)
ν(d).

Proof. For all c ∈ [C] and τ ∈ [T/N ], we consider the process M̃c(τ) defined by,

M̃c(τ + 1/N) = M̃c(τ) +
1

N
Hi,N (M̃c(τ)) + Q̃c(τ + 1/N)

where Q̃c(τ) = Qc(τN)
N ,Qc(t + 1) = Mc(t + 1) − Mc(t) − E[Mc(t + 1) − Mc(t)|M(t), B],

Hc,bc,N (y) = Hc,bc,N (Mc(t))1{max
k∈[C]

Hk,bk,N (Mk(t))=Hc,bc,N (Mc(t))}1{Nbc>Mc(t)}, and let M̃(τ) =

(M̃1(τ), . . . , M̃C(τ)).

When N →∞, and t ∈ [T ], the function Hc,bc,N (Mc(t)) converges to:

Hc,bc,N (Mc(t))→
D∑
d=1

(
1− e−ac,d(bc−

Mc(t)
N )

)
ν(d) = fc,bc(Mc(t)/N).

Let g(M̃) =

(
fc,bc(M̃c)1{max

k∈[C]
fk,bk

(M̃k)=fc,bc (M̃c)}1{bc>M̃c}

)
i∈[C]

be the drift vector. According

to Lemma 7, each element of the drift vector satisfies the first assumption of Theorem 1 in [16].
Moreover, according to Lemma 6, Q̃c(τ +1/n) satisfies the second assumption of Theorem 1 in [16].
Since M̃c(0) = 0, based on Theorem 1 in [16], for all τ ∈ [T/N ], M̃(τ) converges to m(τ), where
m is the solution of the following differential inclusion:

ṁ(τ) ∈ G(m(τ))
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where G(m) = conv
(
fc,bc(mc)ec | c ∈ argmaxj∈[C] fj,bj (mj), bc > mc

)
, and conv denotes the

convex hull.

Following the same results as in Appendix C.1, one can prove that G is upper semicontinuous and L-
one-sided Lipschitz, where L = maxc∈[C] Lc. This ensures uniqueness of the solution m. To get the
explicit rate of the convergence of M̃c to mc, we use Theorem 4 of [16]. According to Lemma 6, for
t ∈ [T ], E[|Qc(t+ 1)|2|M(t), B] ≤ b and F is one sided Lipschitz with constant L = maxc∈[C] Lc

where Lc is defined in Lemma 9. Thus according to theorem 4 in [16], taking δc =
∑D
d=1

ac,d
Ne ν(d),

Kα as defined in Lemma 11 andUc = sup0≤t≤T fc,dc(Mc(t)), takingUc =
∑D
d=1(1−e−ac,dbc)ν(d)

we define Aα,c = Uc(U
2
c +

14Uc

3 + 2Kα), Bα,c = 2U2
c + 4Lδ + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα.
We have,

P
(

sup
0≤t≤T

∣∣∣∣Mc(t)

N
−mc(t/N)

∣∣∣∣ ≥ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c

)
≤ bT

N2ϵ

(94)

D Proof of Theorem 4

In this section, we provide the proof of Theorem 4.

Theorem 4. Let R(T ) =
∑
i∈C Mi(T )− M̂i(T ) denote the regret of ETC− balance. Suppose the

exploration phase lasts for Texplore = T
q+3
4 , for some 0 < q < 1. Then the regret satisfies

R(T ) = O(T
q+3
4 ).

The proof of Theorem 4 is structured in two main steps:

• We begin by establishing a concentration result for an estimator of
(
1− ac,d

N

)Nbc−Mc(t).
• Next, we decompose the regret and derive bounds for each resulting term.

Let m′,m ∈ [0, Nbc) and Vm = {m′ ∈ [0, Nbc)|1/2 ≤ Nbc−m′

Nbc−m ≤ 2}, we consider a
Bernoulli random variable Yc,d,m′(t) with parameter 1 − Dc,d(m

′) := 1 − (1 − ac,d/N)Nbc−m
′
,

whenever c(t) = c, d(t) = d, and Mc(t) = m′. Let the number of observations defined as
Tc,d,m′ :=

∑T
t=1 1{c(t)=c, d(t)=d,Mc(t)=m′}} and Ttotal =

∑
m′∈Vm

Tc,d,m′ . We consider the fol-
lowing estimator:

Θ(m) : =
1

Ttotal

∑
m′∈Vm

T∑
t=1

1{c(t)=c, d(t)=d,Mc(t)=m′}(1− Yc,d,m′(t)). (95)

E[Θ(m)] =
1

Ttotal

∑
m′∈Vm

Tc,d,m′Dc,d(m
′) (96)

E[Θ(m)] =
1

Ttotal

∑
m′∈Vm

Tc,d,m′Dc,d(m)
Nbc−m′
Nbc−m = g(Dc,d(m)) (97)

with Dc,d(m) = (1− ac,d/N)Nbc−m. The next lemma shows that g−1 is Lipschitz continuous.
Lemma 17. g−1 is 2ea Lipschitz.

Proof. Let

g(x) =
1

Ttotal

∑
m′∈Vm

Tc,d,m′ x
Nbc−m′
Nbc−m ,

defined on the interval x ∈
[
(1− a

N )Nbc , 1
]
, where ac,d ≤ a < N . The function g is continuously

differentiable and strictly increasing on this interval, as it is a finite sum of positive-coefficient power
functions. Hence, g is invertible, and its inverse is differentiable with

dg−1

dy
(y) =

1

g′(g−1(y))
.
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We compute

g′(x) =
1

Ttotal

∑
m′∈Vm

Tc,d,m′ · Nbc −m
′

Nbc −m
· x

Nbc−m′
Nbc−m −1,

so that
dg−1

dy
(y) =

1

1
Ttotal

∑
m′∈Vm

Tc,d,m′ · Nbc−m′

Nbc−m · (g
−1(y))

Nbc−m′
Nbc−m −1

.

To bound this derivative, we lower bound g′(x) over the domain. Let

∆ := min

{
1,
(
1− a

N

)Nbc·maxm′∈Vm

(
Nbc−m′
Nbc−m −1

)}
,

then for all x ∈
[
(1− a

N )Nbc , 1
]
,

g′(x) ≥ ∆

Ttotal

∑
m′∈Vm

Tc,d,m′ · Nbc −m
′

Nbc −m
.

This yields
dg−1

dy
(y) ≤ 1

∆
Ttotal

∑
m′∈Vm

Tc,d,m′ · Nbc−m′

Nbc−m
.

Using the assumption Vm =
{
m′ ∈ [0, Nbc)

∣∣∣ 12 ≤ Nbc−m′

Nbc−m ≤ 2
}

we get,

dg−1

dy
(y) ≤

(1− a
N )−Nbc

1/2
= 2(1− a

N )−Nbc ≤ 2ea,

So g−1 is 2ea-Lipschitz.

The next result establishes a concentration result on an estimator of
(
1− ac,d

N

)Nbc−Mc(t).

Lemma 18. With probability 1− δ, D̂c,d(m) = g−1(Θ(m)) satisfies,

|D̂c,d(m)−Dc,d(m)| ≤ 2ea

√
log(2/δ)

2Ttotal
(98)

Proof. Let Θ(m) = 1
Ttotal

∑
m′∈Vm

∑T
t=1 1{{c(t)=c, d(t)=d,Mc(t)=m′}}(1− Yc,d,m′(t)), it is a sum

of independent Bernoulli random variables, then using Hoeffding inequality, with probability 1− δ,
it satisfies,

|Θ(m)− E(Θ(m))| ≤

√
log(2/δ)

2Ttotal

As proved in Lemma 17, g−1 is 2ea Lipschitz, D̂c,d(m) = g−1(Θ(m)) satisfies with probability
1− δ,

|D̂c,d(m)−Dc,d(m)| ≤ 2ea

√
log(2/δ)

2Ttotal
(99)

Let R(T ) be the cumulative regret defined by,

R(T ) =
∑
c∈C

Mc(T )− M̂c(T )

= Rexplore(Texplore) +Rexploit(Texploit)
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We consider Texplore = Tω with 0 < ω < 1 and Texploit = T − Texplore, and Mc is the matching size
in the class c created by Ex-ante Balance and M̂c is the matching size in the class c created by
ETC− balance. Since ETC− balance may not be making optimal decision during exploration,
we can bound Rexplore(Texplore), as Rexplore(Texplore) ≤ CTω. For exploitation phase, let mc be the
solution of differential inclusion defined in Theorem 2. Rexploit(Texploit) satisfies,

Rexploit(Texploit) =
∑
c∈C

T−1∑
t=Texplore

1{∃n∈Nc(t),c∗=c,mn(t+1)=1}︸ ︷︷ ︸
M exploit

c

−
T−1∑

t=Texplore

1{∃n∈Nc(t),d∗=c,mn(t+1)=1}︸ ︷︷ ︸
M̂ exploit

c

(100)

c∗ is the class chosen by Ex-ante Balance and d∗ is the class chosen by ETC− balance.

|Rexploit(Texploit)| (101)

≤
∑
c∈C
|M exploit

c −Nmc(T/N) +Nmc(T/N)− M̂ exploit
c | (102)

≤
∑
c∈C
|Mc(T )−Mc(Texplore)−Nmc(T/N) +Nmc(T/N)− M̂c(T ) + M̂c(Texplore)| (103)

≤
∑
c∈C
|Mc(T )−Nmc(T/N)|︸ ︷︷ ︸

w1

+ |M̂c(Texplore)−Mc(Texplore)|︸ ︷︷ ︸
w2

+ |Nmc(T/N)− M̂c(T )|︸ ︷︷ ︸
w3

(104)

To bound w2, we use the previous bound of CTω. To bound w1, we leverage the result from
Theorem 2. The next lemma, built upon Theorem 2, quantifies the discrepancy between Mc, the
matching size produced by the Ex-ante Balance algorithm, and mc, the solution to the differential
inclusion described therein.
Lemma 19. For c ∈ C and 0 < q < 1,

|Mc(T )−Nmc(T/N)| ∼ O(T
q+3
4 )

Proof. From Theorem 2, with probability 1− bα
Nϵ2 ,∣∣∣∣Mc(T )

N
−mc(T/N)

∣∣∣∣ (105)

≤ min(α, eLα/
√
2L)
√
Aα,c/N + δcBα,c + ϵCα,c (106)

Taking ϵ2 = 1
N1−q with 0 < q < 1, δc =

∑D
d=1

ai,j
Ne ν(d), Kα = (cα + ϵ)ecα/c with c defined in

Lemma 7, Uc =
∑D
d=1(1−e−ac,dbc)ν(d) ≤ 1,Aα,c = Uc(U

2
c+

14Uc

3 +2Kα) ≤ ( 173 +2Kα), Bα,c =

2U2
c + 4Lδc + 12Kα ≤ 2 + 4Lδc + 12Kα, Cα,c = 2U2

c + 4Lϵ+ 8Kα ≤ 2 + 4Lϵ+ 8Kα.

√
Aα,c/N + δcBα,c + ϵCα,c ≤

√
( 173 + 2Kα)

N
+ δc(2 + 4Lδc + 12Kα) + ϵ(2 + 4Lϵ+ 8Kα)

(107)

≤

√
17/3 + αecα + 2

N
+
ecα/c

N
3−q
2

+
4L

N2
+

2 + αecα

N
1−q
2

+
4L+ eαc/c

N1−q

(108)

Thus
√
Aα,c/N + δcBα,c + ϵCα,c ∼ O( 1

N
1−q
4

). Since T = αN with α > 1, this leads to

|Mc(T )−mc(T/N)| ∼ O(T
q+3
4 ).

The next lemma is for bounding w3,
Lemma 20.

|Nmc(T/N)− M̂c(T )| ∼ O(T
q+3
4 )
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Proof. The goal here is to apply the differential inclusion approximation, to bound |M̂c(Texploit)−
Nmc(Texploit/N)|. As defined previously, M̂c is the matching size in the class c ∈ C, built by a
policy that considers the estimator D̂c,d(m). The process M̂c satisfies then for t ∈ [Texplore + 1, T ],

M̂c(t+ 1) = M̂c(t) + 1{∃n∈Nc(t),c∗=c,mn(t+1)=1}

Here c∗ is the class chosen by ETC− balance. Let us compute the expected one step change of the
process M̂c,

E[M̂c(t+ 1)− M̂c(t)|M̂c(t), B] = Ĥc,bc,N (M̂c(t))1{max
k∈[C]

Ĥk,bk,N (M̂k(t))=Ĥc,bc,N (M̂c(t))} (109)

= Ĥc,bc,N (M̂c(t)) (110)

where Ĥc,bc,N (M̂c(t)) =
∑D
d=1

(
1− D̂c,d(M̂c(t))

)
ν(d). Let Q̂c(t+ 1) = M̂c(t+ 1)− M̂c(t)−

E[M̂c(t + 1) − M̂c(t)|B, M̂c(t)]. Here Qc is a martingale difference sequences that satisfies the
same assumptions in Lemma 6. for t ∈ [Texplore + 1, T ]

M̂c(t+ 1) = M̂c(t) + Ĥc,bc,N (M̂c(t)) + Q̂c(t+ 1) (111)

= M̂c(t) +Hc,bc,N (M̂c(t)) + ∆c,bc,N (M̂c(t)) + Q̂c(t+ 1) (112)

Note that the function Hc,bc,N (M̂c(t)) is the same as the one defined in Equation (67). The goal
of the proof is to show that 1

N

∑t
l=1 ∆c,bc,N (M̂c(l)) converges to 0 with high probability. This is

important because, according to the proofs of Theorems 1 and 4 in [16], establishing this convergence
implies that the process M̂c converges to the same solution as the differential inclusion introduced in
Theorem 2. This follows from the fact that we can write the evolution of M̂c as in Equation (111)
where Q̂c is a martingale difference term andHc,bc,N (M̂c(t)) is the drift of the process Mc defined
in Equation (67). Thus, showing that the average of the perturbation term ∆c,bc,N (M̂c(t)) vanishes
ensures that M̂c asymptotically follows the same differential inclusion introduced in Theorem 2.

We now turn our attention to analyzing ∆c,bc,N (M̂c(t)),

∆c,bc,N (M̂c(t)) = Ĥc,bc,N (M̂c(t))1{max
k∈[C]

Ĥk,bk,N (M̂k(t))=Ĥc,bc,N (M̂c(t))} (113)

−Hc,bc,N (M̂c(t))1{max
k∈[C]

Hk,bk,N (M̂k(t))=Hc,bc,N (Mc(t))} (114)

|∆c,bc,N (M̂c(t))| ≤
∣∣∣Ĥc,bc,N (M̂c(t))−Hc,bc,N (M̂c(t))

∣∣∣ (115)

+Hc,bc,N (M̂c(t))

∣∣∣∣1{max
k∈[C]

Ĥk,bk,N (M̂k(t))=Ĥc,bc,N (M̂c(t))} − 1{max
k∈[C]

Hk,bk,N (M̂k(t))=Hc,bc,N (Mc(t))}

∣∣∣∣
(116)

From the concentration inequality in Lemma 18, we have,

A =
∣∣∣Ĥc,bc,N (M̂c(t))−Hc,bc,N (M̂c(t))

∣∣∣ ≤ D∑
d=1

|D̂c,d(M̂c(t))−Dc,d(M̂c(t))|ν(d) (117)

with probability at least 1− δ,

A ≤ 2ea

√
log(2/δ)

2Ttotal
(118)

Now let us focus on
∣∣∣∣1{max

k∈[C]
Ĥk,bk,N (M̂k(t))=Ĥc,bc,N (M̂c(t))} − 1{max

k∈[C]
Hk,bk,N (M̂k(t))=Hc,bc,N (Mc(t))}

∣∣∣∣
we need to bound the mismatch between the indicator functions. These indicators differ only when
the maximum changes, i.e., when the "argmax" under D̂c,d(M̂c(t)) and Dc,d(M̂c(t)) do not agree.
Suppose Hc,bc,N (M̂c(t)) is the largest value among all Hk,bk,N (M̂k(t)) by a margin γ > 0,

Hc,bc,N (M̂c(t)) > Hk,bk,N (M̂k(t)) + ψ for k ̸= c
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To ensure that the estimator D̂c,d does not flip the argmax, we want to control how much each
function Hk,bk,N (M̂k(t)) can change under small perturbations in Dc,d. Suppose that the maximizer
changes for the function Ĥ , this means that for some j ̸= c,

Ĥj,bj ,N (M̂j(t))(M̂j(t)) ≥ Ĥc,bc,N (M̂c(t)) (119)

Thus,

Ĥj,bj ,N (M̂j(t))− Ĥc,bc,N (M̂c(t)) = Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))− Ĥc,bc,N (M̂c(t))
(120)

+Hc,bc,N (M̂c(t)) +Hj,bj ,N (M̂j(t))−Hc,bc,N (M̂c(t))
(121)

Ĥj,bj ,N (M̂j(t)) ≥ Ĥc,bc,N (M̂c(t)) implies,

J =Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))− Ĥc,bc,N (M̂c(t)) +Hc,bc,N (M̂c(t)) (122)

J ≥Hc,bc,N (M̂c(t))−Hj,bj ,N (M̂j(t)) ≥ ψ (123)

Applying the triangle inequality, we get,

B = |Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))− Ĥc,bc,N (M̂c(t)) +Hc,bc,N (M̂c(t))| (124)

B ≤ |Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))|+ |Ĥc,bc,N (M̂c(t))−Hc,bc,N (M̂c(t))| (125)

Thus by the margin condition, we have

|Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))|+ |Ĥc,bc,N (M̂c(t))−Hc,bc,N (M̂c(t))| ≥ ψ
(126)

⇒ max{|Ĥj,bj ,N (M̂j(t))−Hj,bj ,N (M̂j(t))|+ |Ĥc,bc,N (M̂c(t))−Hc,bc,N (M̂c(t))|} ≥ ψ/2
(127)

Let γt =

∣∣∣∣1{max
k∈[C]

Ĥk,bk,N (M̂k(t))=Ĥc,bc,N (M̂c(t))} − 1{max
k∈[C]

Hk,bk,N (M̂k(t))=Hc,bc,N (Mc(t))}

∣∣∣∣, accord-

ing to previous development, we deduce that,

γt ≤ 1{∃k∈C,|Ĥk,bk,N (M̂k(t))−Hk,bk,N (M̂k(t))|≥ψ/2} (128)

But from concentration, we have the following condition on γ,

ψ ≥ 4ea

√
log(2/δ)

2Ttotal
(129)

Thus choosing δ such that this condition is satisfied, we ensure that with high probability
1
N

∑t
l=1 ∆c,bc,N (M̂c(l)) tends to 0. Having established this convergence, and noting that the process

M̂c can be represented in the form given in Equation (67). Thus according to the proof of Theorem 1
and 4 in [16], M̂c converges to the solution of the same differential inclusion defined in Theorem 2.
and we have |M̂c(T )−Nmc(T/N)| ∼ O(N

q+3
4 ) for 0 < q < 1.

With all the previous result, R(T ) = Rexplore(Texplore) + Rexploit(Texploit), we showed first that
Rexplore(Texplore) ∼ O(Tω), and Rexploit(Texploit) ≤ C(2T

q+3
4 + Tω), thus choosing ω = q+3

4 ,
we get that R(T ) ∼ O(T

q+3
4 ).

31


	Model
	Known compatibility probabilities
	A warm-up: Myopic algorithm
	Ex-ante Balance 
	Ex-post Balance

	Unknown compatibility probabilities
	ETC-balance
	Regret

	Conclusion
	Differential inclusions
	Set-Valued Maps
	Definition of differential inclusions
	Existence and uniqueness of the solution

	Myopic algorithm
	Proof of theorem:approxsolution 
	Recovering the Erdős–Rényi case

	Balance algorithm
	Ex-ante Balance
	Proof of theorem:inclusiondiffsol

	Proof of theorem:explicitsolution
	Ex-post Balance

	Proof of theorem:regretetcbalance

