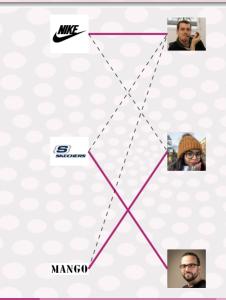
Online Bipartite Matching with budget Refill

M.Cherifa, C.Calauzènes, V.Perchet

December 15, 2023

Motivation: user allocation



Matching on bipartite graphs

3/45

Matching on a Bipartite Graph

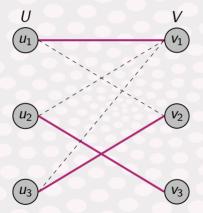
Let G = (U, V, E) be a a bipartite graph:

- U and V two sets of vertices.
- Each node in U has a budget $b_u = 1$.
- Edges are only between U and V, $E = \{(u, v), u \in U, v \in V\}$.

4 / 45

Matching on a Bipartite Graph

A matching is a subset of E with no common vertices.

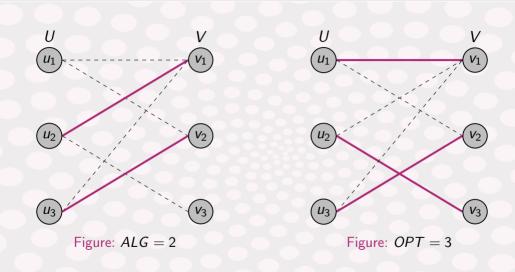


Online matching problem

For t = 1, ..., |V|:

- v_t arrives with its edges.
- the algorithm can match it to a free vertex in U.
- the matching decision is irrevocable.

Evaluating the performance of an Algorithm



Competitive ratio

Definition

For $G \in \mathcal{G}$, the competitive ratio is defined as:

$$CR = rac{\mathbb{E}(ALG(G))}{OPT(G)}$$

Note that $0 \leq CR \leq 1$.

The usual frameworks

• Adversarial (Adv): G can be any graph. The CR is defined by,

$$CR^{\mathrm{adv}} = \min_{G \in \mathcal{G}} \frac{\mathbb{E}(ALG(G))}{OPT(G)}$$

• **Stochastic (IID)**: The vertices of V are drawn iid from a distribution. (precise definition given latter)

$$\mathit{CR}^{ ext{sto}} = rac{\mathbb{E}(\mathit{ALG}(G))}{\mathit{OPT}(G)}$$

9/45

Online matching with unitary budget: Greedy algorithm

10 / 45

Algorithm

For $t = 1, \dots, |V|$: Match v_t to any free neighbor at random end

Performance of Greedy

Theorem (informal)

In the Adversarial setting, for Greedy (and any deterministic alg.)

$$CR(Greedy) = \frac{1}{2}$$

A randomized algorithm can achieve,

$$CR(ALG) \ge 1 - rac{1}{e} pprox 0.63$$

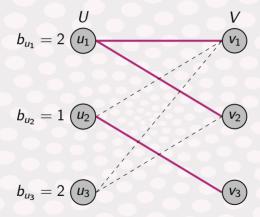
Online *b*-matching problem: Balance algorithm

The *b*-matching problem

Problem definition

- Let G = (U, V, E) be a bipartite graph.
- U set of offline nodes, nodes in V are discovered sequentially.
- Each node in U has a budget $b_u > 1$.

The *b*-matching



The Balance algorithm

Balance algorithm

Algorithm

For
$$t = 1, ..., |V|$$
:
Match v_t to a neighbor with highest remaining budget
end

Balance algorithm

$$b_{u_1,0} = 2$$
 after match $b_{u_1,1} = 1$ u_1
 $b_{u_2,0} = 1$ after match $b_{u_2,1} = 0$ u_2
 $b_{u_3,0} = 2$ after match $b_{u_1,1} = 1$ u_3

Performance of Balance

Theorem (informal)

[Kalyanasundaram and Pruhs 2000], when $b_u = b$ for all $u \in U$,

$$\mathit{CR}(\mathsf{Balance}) = 1 - rac{1}{(1+1/b)^b}$$

[Albers and Schubert 2021] with different budget b_u ,

$$\mathit{CR}(\mathsf{Balance}) = 1 - rac{1}{(1+1/b_{\mathsf{min}})^{b_{\mathsf{min}}}}, \qquad \mathsf{with} \, \min_{u \in U} \, b_u$$

More realistic setting: online matching with budget refills

Problem definition: graph construction

- Let $G \in \mathcal{G}$, with G = (U, V, E) a bipartite graph,
 - |U| = n, |V| = T with $T \ge n$.
 - Nodes in U are offline and nodes in V are revealed sequentially,
 - Each node in U has a budget $b_{u,t} \ge 0$ at time $t \in [T]$.

Problem definition: matching construction

A matching on G is a binary matrix x ∈ {0,1}^{n×T} s.t.
∀(u,t) ∈ U × V, (u,t) ∉ E ⇒ x_{u,t} = 0 (only edges in E can be matched)
∀t ∈ V, ∑_{u∈U} x_{u,t} ≤ 1 (no V-node can be matched twice)
∀(u,t) ∈ U × V, b_{u,t-1} < 1 ⇒ x_{u,t} = 0 (U-nodes need some positive budget to be matched) We will consider two frameworks for G and the budget dynamics $b_{u,t}$,

 The stochastic framework. The graph and the refills are stochastic.
 The adversarial framework. graph is adversarial, refills deterministic. ${\mathcal G}$ is a family of Erdős–Rényi sparse random graphs:

- Edges occurring independently with probability p = a/n.
- Each node in U has a budget $b_{u,t} \in \mathbb{N}$. Budget dynamics:

$$b_{u,t} = \min(K, b_{u,t-1} - x_{u,t} + \eta_t)$$

 η_t is a realization of a Bernoulli random variable $\mathcal{B}(\frac{\beta}{p})$.

(1)

The matching size created by Greedy

Theorem: (first result)

For $\psi = \frac{T}{n} \ge 1$, with high probability Greedy(G, T) is given by,

$$Greedy(G, T) = nh(\psi) + o(n)$$

where $h(\tau)$ is solution of the following system denoted (A),

$$\begin{cases} \dot{h}(\tau) = 1 - e^{-a(1-z_0(\tau))} & 1/n \le \tau \le \psi \\ \dot{z}_0(\tau) = -z_0(\tau)\beta + \frac{z_1(\tau)}{1-z_0(\tau)}(1 - e^{-a+az_0(\tau)}) & \text{for } k = 0 \\ \dot{z}_k(\tau) = (z_{k-1}(\tau) - z_k(\tau))\beta + (z_{k+1}(\tau) - z_k(\tau))\frac{1 - e^{-a+az_0(\tau)}}{1-z_0(\tau)} & \text{for } 1 \le k \le K - 1 \\ \dot{z}_k(\tau) = \beta z_{k-1}(\tau) - z_k(\tau)\frac{1 - e^{-a(1-z_0(\tau))}}{1-z_0(\tau)} & \text{for } k = K \\ \sum_{k=0}^K z_k(\tau) = 1 & \end{cases}$$

Moving to the stationary solution

- Solving the ODE satisfied by $h(\tau)$ requires finding $z_0(\tau)$.
- Solving the system of ODE satisfied by z_k is difficult ...
- Focusing on the stability of the stationary solution of the system.

First results for K = 1

For K = 1, (A) is reduced to ,

$$(A_1) = egin{cases} \dot{z}_0(t) &= -eta \, z_0(t) + rac{z_1(t)}{1-z_0(t)} (1-e^{-c(1-z_0(t))}) \ \dot{z}_1(t) &= eta z_0(t) - rac{z_1(t)}{1-z_0(t)} (1-e^{-c(1-z_0(t))}) \ z_0(t) &+ z_1(t) = 1 \end{cases}$$

The stationary solution of (A_1) is exponentially stable and is given by,

$$egin{aligned} &z_0^* = rac{1}{eta} - rac{1}{a} W\left(rac{a}{eta} e^{-a\left(1 - rac{1}{eta}
ight)}
ight) \ &z_1^* = z_0^* rac{eta}{g(z_0^*)} \end{aligned}$$

where W is the Lambert function and $g(z_0^*) = \frac{1-e^{-a(1-z_0^*)}}{1-z_0^*}$.

Result for K = 1

Corollary

For K = 1 and $\psi = \frac{T}{n} \ge 1$, with high probability ,

$$|Greedy(G, T) - nh^{*}(\psi)| \leq CT^{1-\epsilon}$$

with $h^{*}(x) = \int_{0}^{x} (1 - e^{-a(1-z_{0}^{*})}) d\tau = x(1 - e^{-a(1-z_{0}^{*})}).$
And $\epsilon > 0$, C is a known constant.

The stationary solution of (A) is asymptotically stable and is given by,

$$z^* = \left(z_0^*, z_0^* \frac{\beta}{g(z_0^*)}, \dots, z_0^* \left(\frac{\beta}{g(z_0^*)}\right)^{\kappa}\right)$$

 z_0^* is the unique solution of $\sum_{k=0}^{K} z_0^* \left(\frac{\beta}{g(z_0^*)}\right)^k = 1$ with g defined as previously.

Result for $K \ge 1$

Corollary

For $K \geq 1$ and $\psi = \frac{T}{n} \geq 1$, with high probability,

$$|Greedy(G, T) - nh^*(\psi)| \le o(T)$$

with $h^*(x) = \int_0^x (1 - e^{-a(1-z_0^*)}) d\tau = x(1 - e^{-a(1-z_0^*)})$, and z_0^* defined as previously.

Convergence of the CR

Theorem(informal)

$$CR(Greedy) \geq \frac{nb_0 + \beta T - \beta Tz_0^* \left(\frac{\beta}{g(z_0^*)}\right)^K - nz_0^* \sum_{k=1}^K k \left(\frac{\beta}{g(z_0^*)}\right)^k}{nb_0 + \beta T} + O(T^{-1/4})$$

And for K = 1, if $\frac{a}{\beta}$ is small enough, then

$$|CR(Greedy) - 1| \le O(T^{-rac{1}{4}})$$

For $K \geq 1$, if β is small enough then

$$|\mathit{CR}(\mathit{Greedy}) - 1|
ightarrow 0$$

where z_0^* and g defined as previously.

Key takeaways for the stochastic case

- The matching size created by Greedy on the online Erdős- Rényi graph with budget refills is close to the solution of an ODE.
- Based on the stationary solution of the ODE, we have an exact approximation the matching size.
- Under specific conditions on the problem parameters the CR of Greedy converges to 1.

The adversarial framework

- G = (U, V, E) is a bipartite graph generated by an oblivious adversary:
 - |U| = n and |V| = T with $T \ge n$.
 - Each node in U has a budget $b_{u,t} \in \mathbb{N}$. Budget dynamics:

$$b_{u,t} = b_{u,t-1} - x_{u,t} + \mathbb{1}_t \mod m = 0$$

(2)

Result when $m \ge \sqrt{T}$

Theorem (informal)
For
$$m \ge \sqrt{T}$$
, $CR(Balance) \le 1 - \frac{1}{\left(1 + \frac{1}{b_0}\right)^{b_0}}$

Result when $m = o(\sqrt{T})$

Theorem (informal)

For $m = o(\sqrt{T})$,

$$\mathsf{CR}(\mathsf{balance}) \leq \underbrace{1 - \frac{(1 - lpha)}{e^{(1 - lpha)}}}_{\sim 0.73325...}$$

where α is defined by $\frac{1}{2} = \int_0^\alpha \frac{x e^x}{1-x} dx$.

(3)

Balance is the optimal deterministic algorithm

Theorem (informal)

$\sup_{ALG} \inf_{G \in \mathcal{G}} CR(ALG) \leq \inf_{G \in \mathcal{G}} CR(Balance)$

(4)

Summary and future works

Summary

- In the stochastic framework: the matching size of Greedy converges to a function depending on the stationary solution of a system of ODE. And depending on the problem parameters the CR converges to 1.
- In the adversarial framework: depending on the refill frequency we get upper bounds on the CR of Balance algorithm.

Summary and future works

Future works

- Prove that for K > 1 there is exponential stability of z^* .
- Lower bound of the CR of Balance.

Thank you.

Bibliography I

Albers, Susanne and Sebastian Schubert (2021). "Optimal Algorithms for Online b-Matching with Variable Vertex Capacities". In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Ed. by Mary Wootters and Laura Sanità. Vol. 207. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2:1-2:18. Kalyanasundaram, Bala and Kirk R. Pruhs (2000). "An optimal deterministic algorithm for online b-matching". In: Theoretical Computer Science 233.1, pp. 319-325. Wormald, Nicolas (1999). The differential equation method for random graph processes and greedy algorithms. URL: https://users.monash.edu.au/~nwormald/papers/de.pdf.

Sketch of Proof

- Let $Y_k(t)$ be the number of nodes in U with budget $k \ge 0$.
- *Greedy*(*G*, *t*) the matching size obtained by GREEDY on the online Erdös-Rényi bipartite graph with budget refills at time *t*.
- Since the evolution of Greedy(G, t) depends on Y₀(t), the idea is to prove that (Y_k(t))_{0≤k≤K} is close to the solution of a system of an ODE using the differential equation method.
- Then, do the same for Greedy(G, t).

The matching size at time t + 1 is defined as follows,

$$M(t+1) = M(t) + \mathbb{1}_{\{x_{u,t+1}=1, u \in U_k(t+1)\}}$$

Moving to conditional expectation we get,

$$egin{aligned} \mathbb{E}\left[\mathcal{M}(t+1)-\mathcal{M}(t)|\mathcal{M}(t)
ight] &= \mathbb{P}\left(x_{u,t+1}=1, \; u\in U_k|\mathcal{M}(t)
ight) \ &= 1-\left(1-rac{a}{N}
ight)^{N-Y_0(t)} \end{aligned}$$

M(t) depends on $Y_0(t)!$

Applying the differential equation method on $(Y_k(t))_{k\geq 0}$

Using Wormald 1999 results, we have $Y_k(t) = n z_k(t/n) + O(\lambda n)$ with probability $1 - O(\frac{\gamma}{\lambda} \exp{-\frac{n\lambda^2}{\gamma^3}})$ with $\gamma = 3n$, $\lambda = an^{-1/4}$, where z_k is solution of the following system, $\forall \tau \in [0, 1]$,

$$\dot{z}_0(au) = -z_0(au)eta + rac{z_1(au)}{1-z_0(au)}(1-e^{-a+az_0(au)}) ext{ for } k = 0$$

 $\dot{z}_k(au) = (z_{k-1}(au) - z_k(au))eta + (z_{k+1}(au) - z_k(au))rac{1-e^{-a+az_0(au)}}{1-z_0(au)} ext{ for } k \ge 1$
 $\sum_{t=0}^{n-1} z_k(au) = 1$

Applying differential equation method to M(t)

Using Wormald 1999 results, we have $M(t) = n h(t/n) + O(\lambda_m n)$ with probability $1 - O(\frac{\gamma_m}{\lambda_m} \exp - \frac{n\lambda_m^2}{\gamma_m^3})$, where $\gamma_m = 1$, $\lambda_m = an^{-1/4}$, where *h* is solution of the following equation,

$$\dot{h}(au) = 1 - e^{-a(1-z_0(au))}$$