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Motivation: user allocation
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Matching on bipartite graphs
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Matching on a Bipartite Graph

Let G = (U ,V ,E ) be a a bipartite graph:
U and V two sets of vertices.
Each node in U has a budget bu = 1.
Edges are only between U and V , E = {(u, v), u ∈ U , v ∈ V }.
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Matching on a Bipartite Graph

A matching is a subset of E with no common vertices.
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Online matching problem

For t = 1, . . . , |V |:
vt arrives with its edges.
the algorithm can match it to a free vertex in U .
the matching decision is irrevocable.
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Evaluating the performance of an Algorithm
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Figure: ALG = 2
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Figure: OPT = 3
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Competitive ratio

Definition

For G ∈ G, the competitive ratio is defined as:

CR =
E(ALG (G ))

OPT (G )

Note that 0 ≤ CR ≤ 1.
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The usual frameworks

Adversarial (Adv): G can be any graph. The CR is defined by,

CRadv = min
G∈G

E(ALG (G ))

OPT (G )

Stochastic (IID): The vertices of V are drawn iid from a distribution.
(precise definition given latter)

CRsto =
E(ALG (G ))

OPT (G )
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Online matching with unitary budget:
Greedy algorithm
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Algorithm
For t = 1, . . . , |V |:

Match vt to any free neighbor at random
end
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Performance of Greedy

Theorem (informal)
In the Adversarial setting, for Greedy (and any deterministic alg.)

CR(Greedy) =
1
2

A randomized algorithm can achieve,

CR(ALG ) ≥ 1 − 1
e
≈ 0.63
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Online b-matching problem:
Balance algorithm
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The b-matching problem

Problem definition
Let G = (U ,V ,E ) be a bipartite graph.
U set of offline nodes, nodes in V are discovered sequentially.
Each node in U has a budget bu > 1.
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The b−matching
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The Balance algorithm
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Balance algorithm

Algorithm
For t = 1, . . . , |V |:

Match vt to a neighbor with highest remaining budget.
end
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Balance algorithm

U

bu1,0 = 2 after match bu1,1 = 1

bu2,0 = 1 after match bu2,1 = 0

bu3,0 = 2 after match bu1,1 = 1

V
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Performance of Balance

Theorem (informal)
[Kalyanasundaram and Pruhs 2000], when bu = b for all u ∈ U ,

CR(Balance) = 1 − 1
(1 + 1/b)b

[Albers and Schubert 2021] with different budget bu,

CR(Balance) = 1 − 1
(1 + 1/bmin)bmin

, with min
u∈U

bu
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More realistic setting:
online matching with budget refills
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Problem definition: graph construction

Let G ∈ G, with G = (U ,V ,E ) a bipartite graph,
|U | = n, |V | = T with T ≥ n.
Nodes in U are offline and nodes in V are revealed sequentially,
Each node in U has a budget bu,t ≥ 0 at time t ∈ [T ].
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Problem definition: matching construction

A matching on G is a binary matrix x ∈ {0, 1}n×T s.t.
∀(u, t) ∈ U × V , (u, t) ̸∈ E ⇒ xu,t = 0

(only edges in E can be matched)
∀t ∈ V ,

∑
u∈U xu,t ≤ 1

(no V -node can be matched twice)
∀(u, t) ∈ U × V , bu,t−1 < 1 ⇒ xu,t = 0

(U-nodes need some positive budget to be matched)
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Frameworks considered

We will consider two frameworks for G and the budget dynamics bu,t ,
The stochastic framework.

The graph and the refills are stochastic.
The adversarial framework.

graph is adversarial, refills deterministic.

M. Cherifa Online Matching with Budget Refill December 15, 2023 23 / 45



The stochastic framework

G is a family of Erdős–Rényi sparse random graphs:
Edges occurring independently with probability p = a/n.
Each node in U has a budget bu,t ∈ N. Budget dynamics:

bu,t = min(K , bu,t−1 − xu,t + ηt) (1)

ηt is a realization of a Bernoulli random variable B(β
n
).
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The matching size created by Greedy

Theorem: (first result)
For ψ = T

n
≥ 1, with high probability Greedy(G ,T ) is given by,

Greedy(G ,T ) = nh(ψ) + o(n)

where h(τ) is solution of the following system denoted (A),

ḣ(τ) = 1 − e−a(1−z0(τ)) 1/n ≤ τ ≤ ψ

ż0(τ) = −z0(τ)β + z1(τ)
1−z0(τ)

(1 − e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1−e−a+az0(τ)

1−z0(τ)
for 1 ≤ k ≤ K − 1

żk(τ) = β zk−1(τ)− zk(τ)
1−e−a(1−z0(τ))

1−z0(τ)
for k = K∑K

k=0 zk(τ) = 1
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Moving to the stationary solution

Solving the ODE satisfied by h(τ) requires finding z0(τ).
Solving the system of ODE satisfied by zk is difficult ...
Focusing on the stability of the stationary solution of the system.
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First results for K = 1

For K = 1, (A) is reduced to ,

(A1) =


ż0(t) = −β z0(t) +

z1(t)
1−z0(t)

(1 − e−c(1−z0(t)))

ż1(t) = βz0(t)− z1(t)
1−z0(t)

(1 − e−c(1−z0(t)))

z0(t) +z1(t) = 1
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Stability for K = 1

The stationary solution of (A1) is exponentially stable and is given by,

z∗0 =
1
β
− 1

a
W

(
a

β
e−a(1− 1

β )
)

z∗1 = z∗0
β

g(z∗0 )

where W is the Lambert function and g(z∗0 ) =
1−e−a(1−z∗0 )

1−z∗0
.
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Result for K = 1

Corollary
For K = 1 and ψ = T

n
≥ 1, with high probability ,

|Greedy(G ,T )− nh∗(ψ)| ≤ CT 1−ϵ

with h∗(x) =
∫ x

0 (1 − e−a(1−z∗0 ))dτ = x(1 − e−a(1−z∗0 )).
And ϵ > 0, C is a known constant.
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Stability for K ≥ 1

The stationary solution of (A) is asymptotically stable and is given by,

z∗ =

(
z∗0 , z

∗
0

β

g(z∗0 )
, . . . , z∗0

(
β

g(z∗0 )

)K
)

z∗0 is the unique solution of
∑K

k=0 z
∗
0

(
β

g(z∗0 )

)k
= 1 with g defined as

previously.
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Result for K ≥ 1

Corollary
For K ≥ 1 and ψ = T

n
≥ 1, with high probability,

|Greedy(G ,T )− nh∗(ψ)| ≤ o(T )

with h∗(x) =
∫ x

0 (1 − e−a(1−z∗0 ))dτ = x(1 − e−a(1−z∗0 )), and z∗0 defined as
previously.
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Convergence of the CR

Theorem(informal)

CR(Greedy) ≥
nb0 + βT − βTz∗0

(
β

g(z∗0 )

)K
− nz∗0

∑K
k=1 k

(
β

g(z∗0 )

)k
nb0 + βT

+ O(T−1/4)

And for K = 1, if a
β is small enough, then

|CR(Greedy)− 1| ≤ O(T− 1
4 )

For K ≥ 1, if β is small enough then

|CR(Greedy)− 1| → 0

where z∗0 and g defined as previously.
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Key takeaways for the stochastic case

The matching size created by Greedy on the online Erdős- Rényi graph
with budget refills is close to the solution of an ODE.
Based on the stationary solution of the ODE, we have an exact
approximation the matching size.
Under specific conditions on the problem parameters the CR of Greedy
converges to 1.
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The adversarial framework

G = (U ,V ,E ) is a bipartite graph generated by an oblivious adversary:
|U | = n and |V | = T with T ≥ n.
Each node in U has a budget bu,t ∈ N. Budget dynamics:

bu,t = bu,t−1 − xu,t + 1t mod m=0 (2)
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Result when m ≥
√
T

Theorem (informal)
For m ≥

√
T ,

CR(Balance) ≤ 1 − 1(
1 + 1

b0

)b0
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Result when m = o(
√
T )

Theorem (informal)
For m = o(

√
T ),

CR(balance) ≤ 1 − (1 − α)

e(1−α)︸ ︷︷ ︸
≃0.73325...

(3)

where α is defined by 1
2 =

∫ α

0
xex

1−x
dx .
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Balance is the optimal deterministic algorithm

Theorem (informal)

sup
ALG

inf
G∈G

CR(ALG ) ≤ inf
G∈G

CR(Balance) (4)

.
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Summary and future works

Summary
In the stochastic framework: the matching size of Greedy converges to
a function depending on the stationary solution of a system of ODE.
And depending on the problem parameters the CR converges to 1.
In the adversarial framework: depending on the refill frequency we get
upper bounds on the CR of Balance algorithm.
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Summary and future works

Future works
Prove that for K > 1 there is exponential stability of z∗.
Lower bound of the CR of Balance.
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Thank you.
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Sketch of Proof

Let Yk(t) be the number of nodes in U with budget k ≥ 0.
Greedy(G , t) the matching size obtained by GREEDY on the online
Erdös-Rényi bipartite graph with budget refills at time t.
Since the evolution of Greedy(G , t) depends on Y0(t), the idea is to
prove that (Yk(t))0≤k≤K is close to the solution of a system of an ODE
using the differential equation method.
Then, do the same for Greedy(G , t).
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The matching size at time t + 1 is defined as follows,

M(t + 1) = M(t) + 1{xu,t+1=1, u∈Uk (t+1)}

Moving to conditional expectation we get,

E [M(t + 1)−M(t)|M(t)] = P (xu,t+1 = 1, u ∈ Uk |M(t))

= 1 −
(
1 − a

N

)N−Y0(t)

M(t) depends on Y0(t)!
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Applying the differential equation method on (Yk(t))k≥0

Using Wormald 1999 results, we have Yk(t) = n zk(t/n) + O(λ n) with
probability 1 −O(γ

λ
exp−nλ2

γ3 ) with γ = 3n, λ = an−1/4, where zk is solution
of the following system, ∀τ ∈ [0, 1],

ż0(τ) = −z0(τ)β +
z1(τ)

1 − z0(τ)
(1 − e−a+az0(τ)) for k = 0

żk(τ) = (zk−1(τ)− zk(τ))β + (zk+1(τ)− zk(τ))
1 − e−a+az0(τ)

1 − z0(τ)
for k ≥ 1∑

k≥0

zk(τ) = 1

M. Cherifa Online Matching with Budget Refill December 15, 2023 44 / 45



Applying differential equation method to M(t)

Using Wormald 1999 results, we have M(t) = n h(t/n) + O(λm n) with
probability 1 −O( γm

λm
exp−nλ2

m

γ3
m
), where γm = 1, λm = an−1/4, where h is

solution of the following equation,

ḣ(τ) = 1 − e−a(1−z0(τ))
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