Dynamics and learning in online allocation problems

Maria Cherifa

Supervised by Prof. Vianney Perchet and Dr. Clément Calauzènes

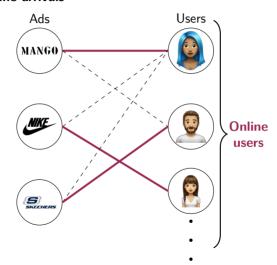
December 11, 2025

0 Table of contents

- 1 Motivation/introduction
- 2 Online matching with budget refills
- Online matching on stochastic block model
- Conclusion and future works

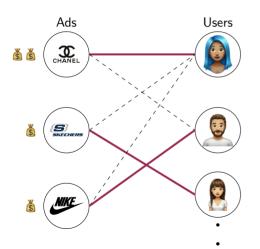
Motivation: online advertisement

Constraint 1: online arrivals



Motivation: online advertisement

Constraint 2: budget evolution



Budget evolution of an ad:

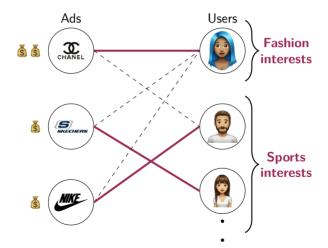
to user 1.

left.

sales.

Motivation: online advertisement

Constraint 3: community structure



From motivation to our problem setting

Key elements of our setting

- Online user arrivals: decisions made sequentially.
- ► Ad budgets: limited and sometimes refilled.
- Communities: matching users to relevant ads.

Warm-up: standard online matching

Modeling:

- ► Natural structure: **bipartite graphs**.
- Online arrivals: part of the graph is unknown.

For t = 1, ..., |V|:

- \triangleright v_t arrives with its edges.
- ► Each node $u \in U$ has a budget $b_u \in \{0,1\}$ (degree of u).
- ► The algorithm can match v_t to a neighbor in U.
- ► The matching decision is irrevocable.

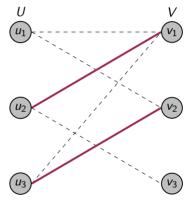


Figure: Online matching on a bipartite graph.

The performance of an algorithm

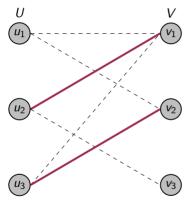


Figure: ALG = 2.

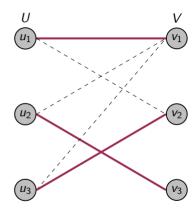


Figure: OPT = 3.

1 Competitive ratio

Definition (informal)

For $G \in \mathcal{G}$, where \mathcal{G} is a family of graphs, the competitive ratio is defined as:

$$CR = \frac{\mathbb{E}(ALG(G))}{\mathbb{E}(OPT(G))}.$$

Note that $0 \le CR \le 1$.

1 The usual frameworks

- ▶ Adversarial (Adv): G can be any graph. The vertices of V arrive in any order.
- ▶ **Stochastic (IID)**: The vertices of *V* are drawn iid from a distribution.

Frameworks depend on the type of the graph!

1 Greedy Algorithm

Algorithm 1:

Input: a bipartite graph G

Output: a matching *M*

for $t = 1, \ldots, |V|$ do

Match v_t to any free neighbor chosen uniformly at random. Update M.

end

Theorem:(informal)

Adversarial setting (Mehta et al. 2013),

$$\mathit{CR}(\mathtt{Greedy}) = \frac{1}{2}.$$

Stochastic setting (Mastin et al. 2013),

$$CR(Greedy) \geq 0.837.$$

Online *b*-matching problem: Balance algorithm

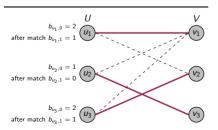
Algorithm 2:

Input: a bipartite graph *G* **Output:** a matching *M*

for
$$t = 1, \ldots, |V|$$
 do

Match v_t to a neighbor with highest remaining budget. Update M.

end



Theorem: (informal)

In the adversarial framework:

If $b_u = b$ (Kalyanasundaram et al. 2000),

$$\mathit{CR}(\mathtt{Balance}) = 1 - rac{1}{(1+1/b)^b}.$$

With different budgets (Albers et al. 2021),

$$\mathit{CR}(exttt{Balance}) = 1 - rac{1}{(1+1/b_{\mathsf{min}})^{b_{\mathsf{min}}}}.$$

$$b_{\min} = \min_{u \in U} b_u$$
.

Differential equation method - the goal

In stochastic frameworks, how does the matching process evolve over time?

- ▶ Does it move smoothly toward equilibrium?
- ▶ Or does it fluctuate unpredictably due to randomness?

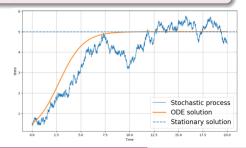
For i = 0, 1, 2, ..., we have a discrete time random process

$$Y(i) = (Y_1(i), \ldots, Y_a(i)),$$

(e.g. numbers of edges, degrees, components in a random graph process).

② Understand the *typical trajectory* of *Y* as the system grows.

🢡 Rely on ordinary differential equations.



1

Differential equation method - the flavour

Key idea \rightarrow think of $\mathbb{E}[Y_k(i+1) - Y_k(i) \mid \mathcal{F}_i]$ as a gradient.

Assumptions

► Approximate the drift.

 $\mathbb{E}[Y_k(i+1)-Y_k(i)\mid \mathcal{F}_i]=F_k(i/n,Y_1/n,\ldots,Y_a/n)+o(1)$, with F "nice enough".

▶ Check $|Y_k(i+1) - Y_k(i)|$ is small enough.

nice enough = sufficiently smooth.

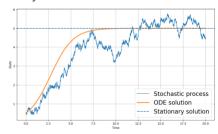
- → Then, with high probability, the random process $\frac{Y_k(i)}{n}$ stays very close to $y_k(t)$ the solution of $y_k'(t) = F_k(t, y_1(t), \dots, y_n(t))$.
- → Dynamic concentration of the process around its expected trajectory.

Differential equation method – the difficulty

- ⚠ In practice, the bottleneck is solving the ODE.
 - ▶ The drift $F(\cdot)$ is often non-linear and high-dimensional.
 - ▶ No closed-form solution in many real problems.
 - Even numerically, the behavior may be tricky to understand.

Our strategy:

- Study the stationary solution (equilibrium).
- Construct good approximations of the ODE trajectory.
- ► Solve the ODE in closed form.



More realistic setting: online matching with budget refills (Cherifa et al. 2024)

Clément Calauzènes

Vianney Perchet

From standard online matching to budget refills

Constraint 1 + Constraint 2: online arrivals and budget evolution.

The standard online matching

- ightharpoonup G = (U, V, E) is a bipartite graph.
- ► Nodes in *U* are offline and nodes in *V* are online.
- Each node in U has a budget $b_{u,t} \in \{0,1\}$,

$$b_{u,t} = egin{cases} b_{u,t-1} - 1 & \mathsf{match}, \ b_{u,t-1} & \mathsf{no} \ \mathsf{match}. \end{cases}$$

Budget refills

- ightharpoonup G = (U, V, E) is a bipartite graph.
- Nodes in *U* are offline and nodes in *V* are online.
- ▶ Each node in U has a budget $b_{u,t} \in \mathbb{N}$,

$$b_{u,t} = egin{cases} b_{u,t-1} - 1 + extbf{\emph{r}}_t & ext{match}, \ b_{u,t-1} + extbf{\emph{r}}_t & ext{no match}. \end{cases}$$

rt can be stochastic or deterministic.

2 Problem definition

Let G=(U,V,E) be a bipartite graph.

- $|U| = n, |V| = T \text{ with } T \ge n.$
- ► Nodes in *U* are offline and nodes in *V* are online.
- Each node in U has a budget $b_{u,t} \ge 0$ at time $t \in [T]$.

A matching on G is a binary matrix

- $\mathbf{x} \in \{0,1\}^{n \times T}$ such that,
 - $\forall (u,t) \in U \times V, (u,t) \notin E \Rightarrow \mathbf{x}_{u,t} = 0.$
 - $\blacktriangleright \forall t \in V, \sum_{u \in U} x_{u,t} \leq 1.$
 - $\qquad \forall (u,t) \in U \times V, \ b_{u,t-1} < 1 \Rightarrow \mathbf{x}_{u,t} = 0.$

Two frameworks considered:

- Stochastic framework.
- Adversarial framework.

G is an Erdös - Rényi sparse random graph:

- \triangleright Edges occurring independently with probability p = a/n.
- ▶ Each node in *U* has a budget $b_{u,t} \in \mathbb{N}$. Budget dynamics:

$$b_{u,t} = \min(K, b_{u,t-1} - x_{u,t} + \frac{r_t}{r_t}), \quad b_{u,0} = b_0,$$

 r_t is a realization of a Bernoulli random variable $\mathcal{B}(\frac{\beta}{n})$. Budgets are capped by K.

The difficulty of the setting

Greedy in standard online matching: the matching size built by Greedy satisfies,

$$\mathbb{E}\left[\operatorname{Greedy}(G,t)-\operatorname{Greedy}(G,t-1)\right)|\operatorname{Greedy}(G,t)]=1-\left(1-\frac{a}{n}\right)^{n-\operatorname{Greedy}(G,t)}.$$

- Greedy $(G, t)/n \xrightarrow{\text{w.h.p.}} z$, where z is the solution of $\dot{z}(t) = 1 e^{-a(1-z(t))}$.
- Greedy in online matching matching with budget refill: match only if budget ≥ 1, thus,

$$\mathbb{E}\left[\operatorname{Greedy}(G,t+1)-\operatorname{Greedy}(G,t)|\operatorname{Greedy}(G,t)\right]=1-\left(1-\frac{a}{n}\right)^{n-\frac{\mathsf{Y_0}(t)}{n}}.$$

Greedy(G, t) depends on Y_k , the number of nodes in U with budget k.

K dimensional problem!

The matching size created by Greedy

Theorem: (Cherifa et al. 2024) (informal)

For $\frac{T}{n} \geq 1$, with high probability $\operatorname{Greedy}(G,T)$ is given by,

$$Greedy(G, T) = nh(T/n) + o(n).$$

Where h is solution of: $\dot{h}(\tau) = 1 - e^{-a(1-z_0(\tau))}$, and z_0 is the solution of,

$$\begin{cases} \dot{z}_{0}(\tau) = -z_{0}(\tau)\beta + z_{1}(\tau)g(z_{0}(\tau)) & \text{for } k = 0, \\ \dot{z}_{k}(\tau) = -\Delta z_{k}(\tau)\beta + \Delta z_{k+1}(\tau)g(z_{0}(\tau)) & \text{for } 1 \leq k \leq K - 1, \\ \dot{z}_{k}(\tau) = \beta z_{k-1}(\tau) - z_{k}(\tau)g(z_{0}(\tau)) & \text{for } k = K, \\ \sum_{k=0}^{K} z_{k}(\tau) = 1. \end{cases}$$
(1)

$$g(\mathbf{z}_0(\tau)) = \frac{1 - e^{-a + a \mathbf{z}_0(\tau)}}{1 - \mathbf{z}_0(\tau)}, \Delta z_k(\tau) = z_k(\tau) - z_{k-1}(\tau) \text{ and } 0 \le \tau \le T/n.$$

$$\begin{cases} \dot{h} = 1 - e^{-a(1-z_0)} \\ \dot{z}_0 = -z_0 \, \beta + z_1 \, \frac{1 - e^{-a + az_0}}{1 - z_0} \end{cases}$$
 Hard to solve
$$\begin{cases} \dot{z}_k = (z_{k-1} - z_k) \beta + (z_{k+1} - z_k) \, \frac{1 - e^{-a + az_0}}{1 - z_0} \end{cases}$$
 Non-linear and strongly coupled in (z_0, \dots, z_K) .
$$\dot{z}_K = \beta \, z_{K-1} - z_K \, \frac{1 - e^{-a + az_0}}{1 - z_0}$$
 No closed-form even for small K .

Our strategy

Focus on the **stationary solution** (z_0^*, \ldots, z_K^*) : analyze its stability and derive performance guarantees.

Case K=1

For K=1, eq. (1) is reduced to

$$\begin{cases} \dot{z}_0(\tau) = -\beta z_0(\tau) + z_1(\tau)g(z_0(\tau)) \\ \dot{z}_1(\tau) = \beta z_0(\tau) - z_1(\tau)g(z_0(\tau)) \\ z_0(\tau) + z_1(\tau) = 1 \end{cases}$$

The stationary solution (z_0^*, z_1^*) is **exponentially stable**,

$$\begin{aligned} z_0^* &= \frac{1}{\beta} - \frac{1}{a} \, W \bigg(\frac{a}{\beta} e^{-a \left(1 - \frac{1}{\beta} \right)} \bigg) \,, \\ z_1^* &= z_0^* \, \frac{\beta}{g(z_0^*)}. \end{aligned}$$

W is the Lambert function.

Corollary: (Cherifa et al. 2024) (informal)

For $\frac{T}{n} \ge 1$, with high probability,

$$|\operatorname{Greedy}(G,T)-nh^*(T/n)|\leq CT^{1-\epsilon},$$

with,

$$h^*(x) = x(1 - e^{-a(1-z_0^*)}).$$

Here $\epsilon > 0$ and C are known constants.

The stationary solution of eq. (1) is asymptotically stable and is given by,

$$\left(z_0^*, z_0^* \frac{\beta}{g(z_0^*)}, \ldots, z_0^* \left(\frac{\beta}{g(z_0^*)}\right)^K\right),\,$$

 z_0^* is the unique solution of

$$\sum_{k=0}^{K} z_0^* \left(\frac{\beta}{g(z_0^*)} \right)^k = 1.$$

Corollary: (Cherifa et al. 2024) (informal)

For $\frac{T}{n} \geq 1$, with high probability,

$$|\operatorname{Greedy}(G,T)-nh^*(T/n)|\leq o(T),$$

with
$$h^*(x) = x(1 - e^{-a(1-z_0^*)})$$
.

2 Difficulty of higher dimension

- ✓ Simple case: K = 1
 - ▶ Only **two** budget levels: $\{0,1\}$.
 - Constraint $z_0 + z_1 = 1 \Rightarrow$ one-dimensional **ODE**.
 - Every deviation is immediately pulled back.

Exponential stability (fast convergence)

\mathbf{X} General case: K > 1

- ▶ **Multiple** budget levels: 0, 1, ..., K.
- Perturbations can spread across levels.
- In some directions pertubations decay slowly.

Only asymptotic stability (slow convergence in some directions)

 \rightarrow Stability strongly depends on K

The technical reason behind asymptotic stability

Stability analysis of stationary solutions of an ODE system via the eigenvalues of the Jacobian matrix at the equilibrium point.

$$J = egin{pmatrix} -eta + z_1^* g'(z_0^*) & g(z_0^*) & 0 & \cdots & 0 \ eta + (z_2^* - z_1^*) g'(z_0^*) & -eta - g(z_0^*) & g(z_0^*) & \ddots & dots \ (z_3^* - z_2^*) g'(z_0^*) & eta & -eta - g(z_0^*) & \ddots & 0 \ dots & \ddots & \ddots & \ddots & g(z_0^*) \ -z_K^* g'(z_0^*) & \cdots & 0 & eta & -g(z_0^*). \end{pmatrix}.$$

The spectrum of J lies in the left half-plane, apart from one eigenvalue located at zero.

Convergence of the CR

Theorem: (Cherifa et al. 2024) (informal)

$$\mathit{CR}(\mathtt{Greedy}) \geq 1 - \frac{\beta \mathit{Tz_0}^* \left(\frac{\beta}{g(z_0^*)}\right)^K + \mathit{nz_0}^* \sum_{k=1}^K k \left(\frac{\beta}{g(z_0^*)}\right)^k}{\mathit{nb_0} + \beta \mathit{T}} + \mathit{O}(\mathit{T}^{-1/4}),$$

When T, n, K tends to $+\infty$:

$$|\mathit{CR}(\mathtt{Greedy}) - 1| o 0,$$

where z_0^* and g defined as previously.

Interpretation:

- ▶ When $T \to \infty$: $CR(\text{Greedy}) \to \frac{g(z_0^*)(1-z_0^*)}{\beta}$ (the CR depends only on the stationary point).
- ▶ When $K, n \to \infty$: $\frac{g(z_0^*)(1-z_0^*)}{\beta} \to 1$ (Greedy wastes almost nothing when budgets grow).

The adversarial framework

- G = (U, V, E) is a bipartite graph generated by an oblivious adversary:
 - |U| = n and |V| = T with $T \ge n$.
 - ▶ Each node in *U* has a budget $b_{u,t} \in \mathbb{N}$. Budget dynamics:

$$b_{u,t} = b_{u,t-1} - x_{u,t} + \mathbb{1}_{t \mod m=0}, \quad b_{u,0} = b_0.$$

 $\frac{1}{2}$ m is the parameter of the frequency of the refills.

Theorem: (Cherifa et al. 2024) (informal)

For $m > \sqrt{T}$.

$$\mathit{CR}(exttt{Balance}) \leq 1 - rac{1}{\left(1 + rac{1}{b_0}
ight)^{b_0}}.$$

Theorem:(Cherifa et al. 2024)(informal)

For $m = o(\sqrt{T})$.

$$CR(Balance) \leq \underbrace{1 - \frac{(1 - \alpha)}{e^{(1 - \alpha)}}}_{\approx 0.73325...}$$

where α is defined by $\frac{1}{2} = \int_0^{\alpha} \frac{xe^x}{1-x} dx$.

No deterministic algorithm can beat Balance.

More realistic setting: online matching on stochastic block model (Cherifa et al. 2025)

Clément Calauzènes

Vianney Perchet

From Erdös - Rényi graph to stochastic block model

Constraint 1 + Constraint 3: online arrivals and community structure.

Erdös - Rénvi model

- All ads are statistically identical.
- Every user connects to every ads with same probability p.
- Matching decisions depend only on availability (budget 0 or 1).
- ▶ X no community structure.

Stochastic block model

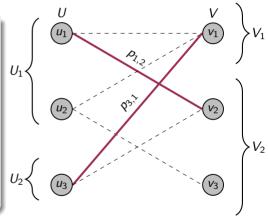
- Users and ads are divided into communities.
- Edge probability depends on class pair p_{c,d}.
- ► Each class evolves differently and affects the others.

Matching depends on class proportions and compatibility matrix.

Let G be a bipartite graph G = (U, V, E).

- |U| = n offline nodes, $|V| = T \ge n$ online arrivals.
- Offline and online nodes have classes in \mathcal{C} and \mathcal{D} .
- ightharpoonup Each $u \in U$ and $v \in V$ has a class $c(u) \sim \mu$ and $d(v) \sim \nu$.
- Conditional on classes,

$$\Pr[(u, v) \in E] = p_{c(u), d(v)}.$$



Generalization of Erdös - Rényi

Notations and assumptions

- ▶ The sparse regime: every $p_{c,d} = \frac{a_{c,d}}{n}$.
- \blacktriangleright b_c is the proportion of nodes in class c.
- M_c(t) is the number of matched nodes in class c.
- ► $M(t) := \sum_{c \in C} M_c(t)$ is the size of the matching constructed.
- $ightharpoonup \mathcal{F}_c(t)$ is the set of unmatched nodes of class c.

Two cases of study:

- ► The probabilities $p_{c,d}$ are known.
- ► The probabilities $p_{c,d}$ are unknown.

Goal. When a node of class d arrives, pick an offline class c that yields a good chance of matching without exhausting capacities.

Idea. Pre-compute an optimal plan Q^* such that:

$$Q^* \in \arg\max_{Q} \sum_{c,d} Q(c,d) p(c,d),$$
 s.t $\sum_{d} Q(c,d)
u(d) = b_c, \ orall c \in \mathcal{C},$ and $\sum_{d} Q(c,d)
u(d) =
u(d), orall c \in \mathcal{D}.$

 \P Intuition. Q^* is a smart allocation: It sends each type-d arrival to the most promising offline classes while respecting capacities.

Algorithm 3: Myopic algorithm

```
Output: Updated matching M(t)
Compute the optimal Q^*.
for t \in [T] do
   Choose c_t \in \mathcal{C} at random with probability Q^*(c_t, d_t)/\nu(d_t).
   if \mathcal{F}_{C_*}(t) = \emptyset then
   M(t) = M(t-1).
   else
```

From Erdős-Rényi to SBM: difficulty for Myopic

- ► Myopic in Erdős–Rényi (homogeneous case)
 - ightharpoonup One global matching process M(t).
 - $\qquad \qquad \stackrel{M(t)}{\stackrel{\text{w.h.p.}}{\longrightarrow}} y(t), \qquad \dot{y}(t) = 1 e^{-a(1 y(t))}.$
 - ► Scalar ODE, explicit closed form for *y*.
- ► Myopic in SBM (structured, heterogeneous case)
 - ▶ One matching process per class c: $M_c(t)$.
 - With high probability, for each class $c: \frac{M_c(t)}{n} \xrightarrow{\text{w.h.p.}} y_c(t)$, where y_c solves $\dot{y}_c(t) = \sum_{d=1}^{D} \left(1 e^{-a_{c,d}\left(b_c y_c(t)\right)}\right) Q^*(c,d)$.
 - No closed form: depends on the class c, all neighbor classes d, and the optimal plan Q^* .

Known $p_{c,d}$ - the matching size of Myopic strategy

Theorem: (Cherifa et al. 2025) (informal)

Let $T = \alpha n$, and $y_c : [0, \alpha] \to \mathbb{R}$ be the solution of the following ODE,

$$\dot{y}_c(s) = \sum_{d=1}^{D} \left(1 - e^{-a_{c,d}(b_c - y_c(s))}\right) Q^*(c,d),$$
 $y_c(0) = 0.$

Then, for each class $c \in C$, $M_c(t)$ satisfies w.h.p,

$$|M_c(t)/n - y_c(t/n)| \le \mathcal{O}_{L_c,\alpha}(n^{-1/3}).$$

Moreover, $y_c = \tilde{y}_c - e_c$, with $\tilde{y}_c(t) = b_c (1 - e^{-tL_c})$, and e_c satisfies,

$$e_c(t) \leq J_c(1 - e^{-L_c t})/L_c.$$

where, J_c and L_c are known constants.

Known $p_{c,d}$ - Balance algorithm

Algorithm 4: Balance

```
 \begin{aligned} \textbf{Output:} & \text{ Updated matching } \textit{M}(t) \\ \textbf{for } & t \in [T] \textbf{ do} \\ & \mid & \text{ Choose } c_t = \text{arg max}_{c \in [C]} \sum_{j=1}^D (1 - (1 - \frac{a_{c,j}}{n})^{nb_c - M_c(t)}) \nu(j) \\ & \textbf{ if } \mathcal{F}_{c_t}(t) = \emptyset \textbf{ then} \\ & \mid & \textit{M}(t) = \textit{M}(t-1). \\ & \textbf{ else } \\ & \mid & \textit{M}(t) = \textit{M}(t-1) \cup \{(u_t, t)\} \textbf{ for } u_t \sim \text{unif}(\mathcal{F}_{c_t}(t)). \end{aligned}
```

Known $p_{c,d}$ - Balance is harder than Greedy/Myopic

Greedy: smooth decisions

- Matching probability is a **continuous** function of the state.
- ODE approximation works.

Balance: switches to the class with max availability.

Drift has an indicator of the maximizer:

$$\mathbb{E}\big[M_c(t+1) - M_c(t) \mid n, \mathbf{M}(t)\big] = H_{c,b_c,n}(M_c(t)) \cdot \underbrace{\mathbf{1}\bigg\{H_{c,b_c,n}(M_c(t)) = \max_{k \in [C]} H_{k,b_k,n}(M_k(t))\bigg\}}_{}$$

discontinuous at ties

- \bigcirc **Drift is not Lipschitz** \Rightarrow ODE method fails.
- A stronger tool is needed: Differential Inclusions.

$$H_{c,b_c,n}(x) = \sum_{d=1}^D (1-(1-a_{c,d}/n)^{nb_c-x})\,
u(d)$$
M. Cherifa Dynamics and learning in online allocation problems

3 Differential Inclusions

ODE: one direction at each point

$$\dot{x}(t)=f(x(t)).$$

Differential inclusion: many possible directions

$$\dot{x}(t) \in F(x(t)),$$

where F(x) is a **set-valued map**.

It is needed here because:

- ▶ Balance **switches** between classes: drift is not continuous.
- ▶ DI naturally handles switching and multiple possible drifts.

Convergence to a Differential Inclusion (Gast et al. 2011)

② Does the matching process converge to a DI?

Setting (Markov chain with small drift and noise)

$$Y^{N}(k+1) = Y^{N}(k) + g^{N}(Y^{N}(k)) + U^{N}(k+1)$$

Assumptions

- ▶ Vanishing drift: $g^N = \gamma^N f^N$, with $\gamma^N \to 0$.
- **Small noise:** U^N is a martingale difference (no big jumps).

Key idea: If the drift is discontinuous, the limit is set-valued:

$$\dot{v}(t) \in F(v(t)).$$

- \rightarrow With high probability, Y^N stays **close** to a trajectory of $\dot{y}(t) \in F(y(t))$.
- Even with discontinuities, the stochastic process has a deterministic limit.

Known $p_{c,d}$ - matching size of Balance

Our contribution. the matching process under Balance converges to a deterministic differential inclusion.

Theorem (informal) (Cherifa et al. 2025)

Let $T = \alpha n$, and let m be the unique solution of the differential inclusion

$$\dot{\textit{m}}(t) \in \textit{F}(\textit{m}(t)) := \operatorname{conv} \left\{ \textit{f}_{\textit{c},\textit{b}_\textit{c}}(\textit{m}_\textit{c}(t)) \, \textit{e}_\textit{c} : \; \textit{c} \in \argmax_{\textit{k} \in [\textit{C}]} \textit{m}_\textit{k}(\textit{m}_\textit{k}(t)) \right\},$$

where $f_{c,b_c}(x) = \sum_{d=1}^{D} \left(1 - e^{-a_{c,d}(b_c - x)}\right) \nu(d)$. Then, for all $t \in [T]$ and $c \in C$, with high probability,

$$\left|\frac{M_c(t)}{n}-m_c(t/n)\right|\leq \mathcal{A}_{\alpha,c,L}/n,$$

Here, m_c is is known in closed form.

 e_c is the c-th basis vector of $\mathbb{R}^{|\mathcal{C}|}$ and L, $\mathcal{A}_{\alpha,c,L}$, are known constants.

→ First analysis of Balance in sparse random SBM.

In practice: the SBM parameters are unknown.

- ► The connection rates $a_{c,d}$ are not given to the algorithm.
- Matching outcomes are the only source of information.
- ► The platform must decide who to match and learn connection probabilities at the same time.

Decision-making + Statistical learning are coupled.

Bandit View 🙎

- ► Each class $c \in C$ behaves like an arm.
- ▶ Playing arm c_t at time t reveals a Bernoulli reward:

 $reward_t = \mathbf{1}\{match succeeds\}$

- ▶ We must balance:
 - **Exploration:** try classes to estimate $a_{c,d}$.
 - **Exploitation:** match with the best-estimated class.

3 The strategy - ETC-balance

Our goal: match with unknown $p_{c,d} = a_{c,d}/n$.

woheadrightarrow Try each classes in C to build estimates of $D_{c,d} = \left(1 - rac{a_{c,d}}{n}
ight)^{nb_c - M_c(t)}$

Explore then commit (ETC)

For $t \leq T_{\text{explore}}$:

- try all classes uniformly,
- collect match outcomes (match/ no match),
- ightharpoonup estimate all $D_{c,d}$.
- Freeze the estimates, and run Balance.

3 The regret

For each class $c \in \mathcal{C}$,

- $ightharpoonup M_c(t)$ is the number of matches made by the Balance up to time t.
- $ightharpoonup \hat{M}_c(t)$ is the number of matches made by ETC balance up to time t.

Theorem: (Cherifa et al. 2025) (informal)

Let $R(T) = \sum_{c \in \mathcal{C}} M_c(T) - \hat{M}_c(T)$ denote the regret of ETC — balance.

Suppose the exploration phase lasts for $T_{
m explore} = T^{rac{q+3}{4}}$, for some 0 < q < 1.

$$R(T) = \mathcal{O}_q(T^{\frac{q+3}{4}}).$$

3 ETC instead of UCB

Goal: Control the regret

$$R(T) = \sum_{c \in \mathcal{C}} \left(M_c(T) - \hat{M}_c(T) \right)$$

$$\leq \sum_{c \in \mathcal{C}} \left(\underbrace{|M_c(T) - nm_c(T/n)|}_{DI \ approximation \ for \ Balance} + \underbrace{|nm_c(T/n) - n\hat{m}_c(T/n)|}_{DI \ learning \ error} - \underbrace{|\hat{M}_c(T) + n\hat{m}_c(t)(T/n)|}_{DI \ error \ for \ the \ learning \ algorithm} \right)$$

If UCB is used:

- $ightharpoonup \hat{m}_c$ is hard to solve.
- ► The bonus term in estimation changes at every round $UCB_{c,d}(t) = \hat{D}_{c,d} + \sqrt{\frac{\alpha \log t}{T_{c,d}}}.$
- UCB mixes exploration and exploitation.

With FTC:

- \hat{m}_c has the same structure as m_c with estimated parameters.
- **Explore first**: collect unbiased information.
- ► Then freeze estimates ⇒ Balance has fixed parameters.

4 Conclusion and future works

More sophisticated refills dynamics.

In our setting:

$$b_{u,t} = b_{u,t-1} - x_{u,t} + r_t$$

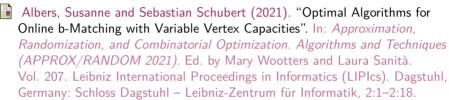
Where r_t is a Bernoulli random variable.

Generalization:

- Poisson Refills : r_t is a realization of Poisson random variables.
- State dependant refills, nodes with low budgets get refills.
- Simple refills dynamics in Geometric random graphs and configuration models.
- ► Stochastic block model with budget refills.
 - 1. Matching will depend on budgets and on classes affinities.
 - 2. More coupled system of ODE to analyze.

Thank you [⊕]ℳ

5 Bibliography I



- Cherifa, Maria, Clement Calauzenes, and Vianney Perchet (May 2024). "Dynamic online matching with budget refills". In: DOI: 10.48550/arXiv.2405.09920.
- (May 2025). "Online matching on stochastic block model". In: DOI: 10.48550/arXiv.2405.09920.
 - Gast, Nicolas and Bruno Gaujal (Apr. 2011). Markov chains with discontinuous drifts have differential inclusions limits. Application to stochastic stability and mean field approximation. Research Report RR-7315.

5 Bibliography II

- Kalyanasundaram, Bala and Kirk R. Pruhs (2000). "An optimal deterministic algorithm for online b-matching". In: *Theoretical Computer Science* 233.1, pp. 319–325.
- Mastin, Andrew and Patrick Jaillet (2013). *Greedy Online Bipartite Matching on Random Graphs*. DOI: 10.48550/ARXIV.1307.2536. URL: https://arxiv.org/abs/1307.2536.
- Mehta, Aranyak et al. (2013). *Online Matching and Ad Allocation*. Cambridge University Press.
- Warnke, Lutz (2019). "On Wormald's differential equation method". In: ArXiv abs/1905.08928.
- Wormald, Nicolas (1999). The differential equation method for random graph processes and greedy algorithms. URL:

https://users.monash.edu.au/~nwormald/papers/de.pdf.